Refilling Nitrogen to Oxygen Vacancies in Ultrafine Tungsten Oxide Clusters for Superior Lithium Storage

被引:64
作者
Cui, Yanglansen [1 ]
Xiao, Kefeng [1 ]
Bedford, Nicholas M. [1 ]
Lu, Xinxin [1 ]
Yun, Jimmy [1 ,2 ]
Amal, Rose [1 ]
Wang, Da-Wei [1 ,3 ]
机构
[1] Univ New South Wales, Sch Chem Engn, Sydney, NSW 2052, Australia
[2] Hebei Univ Sci & Technol, Coll Chem & Pharmaceut Engn, 26th Yuxiang Rd, Shijiazhuang 050018, Hebei, Peoples R China
[3] Univ New South Wales, UNSW Digital Grid Futures Inst, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
anode materials; lithium-ion batteries; nitrogen doping; oxygen vacancy; transitional metal oxides; ELECTRODE MATERIALS; HIGH-PERFORMANCE; ANODE MATERIALS; ION BATTERIES; ELECTROCHEMICAL PROPERTIES; SOLVOTHERMAL SYNTHESIS; HOLLOW MICROSPHERES; HYDROGEN EVOLUTION; ENERGY-STORAGE; METAL-OXIDES;
D O I
10.1002/aenm.201902148
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Morphological engineering of nanosized transitional metal oxides shows great promise for performance improvement, yet limited efforts have been attempted to engineer the atomic structure. Oxygen vacancy (V-O) can boost charge transfer leading to enhanced performance; yet excessive V-O may impair the conductivity. Herein, tungsten oxide is atomically tailored by incorporating nitrogen heteroatoms into the oxygen vacancies. The efficient nitrogen-filling into the oxygen vacancies is evidenced by the electron paramagnetic resonance spectroscopy and X-ray absorption spectroscopy. The coordinated N atoms play a crucial role in facilitating the charge transfer and maintaining efficient lithium-ion diffusion. Consequently, the tungsten oxide with N-filled oxygen vacancies exhibits superior lithium-ion storage performance.
引用
收藏
页数:9
相关论文
共 62 条
[1]   Preparation and electrochemical characterization of ultrathin WO3-x/C nanosheets as anode materials in lithium ion batteries [J].
Bao, Keyan ;
Mao, Wutao ;
Liu, Guangyin ;
Ye, Liqun ;
Xie, Haiquan ;
Ji, Shufang ;
Wang, Dingsheng ;
Chen, Chen ;
Li, Yadong .
NANO RESEARCH, 2017, 10 (06) :1903-1911
[2]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[3]   Carbide and nitride overlayers on early transition metal surfaces: Preparation, characterization, and reactivities [J].
Chen, JGG .
CHEMICAL REVIEWS, 1996, 96 (04) :1477-1498
[4]  
Cheng F., 2013, Angew. Chem, V125, P2534
[5]   Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet [J].
Choi, HG ;
Jung, YH ;
Kim, DK .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2005, 88 (06) :1684-1686
[6]   ION BOMBARDMENT-INDUCED DECOMPOSITION OF LI AND BA SULFATES AND CARBONATES STUDIED BY X-RAY PHOTOELECTRON-SPECTROSCOPY [J].
CONTARINI, S ;
RABALAIS, JW .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 1985, 35 (3-4) :191-201
[7]  
CONTOUR JP, 1979, J MICROSC SPECT ELEC, V4, P483
[8]   Preparation and characterization of CoO used as anodic material of lithium battery [J].
Do, JS ;
Weng, CH .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :482-486
[9]   Ionic liquid-modulated preparation of hexagonal tungsten trioxide mesocrystals for lithium-ion batteries [J].
Duan, Xiaochuan ;
Xiao, Songhua ;
Wang, Lingling ;
Huang, Hui ;
Liu, Yuan ;
Li, Qiuhong ;
Wang, Taihong .
NANOSCALE, 2015, 7 (06) :2230-2234
[10]   Three-dimensional nitrogen-doped graphene frameworks anchored with bamboo-like tungsten oxide nanorods as high performance anode materials for lithium ion batteries [J].
Gu, Xinyuan ;
Wu, Feilong ;
Lei, Bingbing ;
Wang, Jing ;
Chen, Ziliang ;
Xie, Kai ;
Song, Yun ;
Sun, Dalin ;
Sun, Lixian ;
Zhou, Huaiying ;
Fang, Fang .
JOURNAL OF POWER SOURCES, 2016, 320 :231-238