We call a chordless path nu(1)nu(2)...nu(i) simplicial if it does not extend into any chordless path nu(0)nu(1)nu(2)...nu(i)nu(i+1). Trivially, for every positive integer k, a graph contains no chordless cycle of length k + 3 or more if each of its nonempty induced subgraphs contains a simplicial path with at most k vertices; we prove the converse. The case of k = 1 is a classic result of Dirac. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:445 / 448
页数:4
相关论文
共 4 条
[1]
Dirac G. A., 1961, Abh. Math. Semin. Univ. Hambg, V25, P71, DOI [10.1007/BF02992776, DOI 10.1007/BF02992776]