Dirac-type characterizations of graphs without long chordless cycles

被引:11
作者
Chvátal, V [1 ]
Rusu, I
Sritharan, R
机构
[1] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ 08903 USA
[2] Univ Orleans, LIFO, Orleans, France
[3] Univ Dayton, Dept Comp Sci, Dayton, OH 45469 USA
关键词
triangulated graphs; induced paths; forbidden induced cycles;
D O I
10.1016/S0012-365X(01)00166-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We call a chordless path nu(1)nu(2)...nu(i) simplicial if it does not extend into any chordless path nu(0)nu(1)nu(2)...nu(i)nu(i+1). Trivially, for every positive integer k, a graph contains no chordless cycle of length k + 3 or more if each of its nonempty induced subgraphs contains a simplicial path with at most k vertices; we prove the converse. The case of k = 1 is a classic result of Dirac. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:445 / 448
页数:4
相关论文
共 4 条