Measurements and modelling of nitrogen species in CH4/O2/N2 flames doped with NO, NH3, or NH3+NO

被引:21
|
作者
Lamoureux, Nathalie [1 ,2 ]
Marschallek-Watroba, Katarzyna [1 ]
Desgroux, Pascale [1 ]
Pauwels, Jean -Francois [1 ]
Sylla, Marame D. [1 ]
Gasnot, Laurent [1 ]
机构
[1] Univ Lille, CNRS, PhysicoChim Proc Combust & Atmosphere PC2A, UMR8522, F-59000 Lille, France
[2] Univ Lille, CNRS, PC2A, UMR8522, Bat C11, F-59655 Villeneuve Dascq, France
关键词
NH3; NO; HCN; Premixed flame; MBMS; NITRIC-OXIDE; AMMONIA; METHANE; OXYGEN; GAS; REDUCTION; CHEMISTRY; OXIDATION; KINETICS;
D O I
10.1016/j.combustflame.2016.10.019
中图分类号
O414.1 [热力学];
学科分类号
摘要
Species profiles measurements were performed by using Molecular Beam Mass Spectrometry in low pressure CH4/O-2/N-2 flames doped with NO, NH3 or NH3+NO. The present paper aims to study NO/NH3 conversion in hydrocarbon flames. It is based on the analysis of CH2/CH3 radicals and NO, NH3 and HCN species profiles. In NO doped flame, NO-reburning prevails, but in NH3 and NH3+NO doped flames, NH3 conversion in NO was measured with a yield close to 90-100%. HCN peak mole fractions were found in similar amount in the NH3 and NH3+NO doped flames, twice higher than in the NO doped flame. Experimental results are compared to simulated species profiles by using three detailed mechanisms. A general good agreement between experimental and simulated NO and NH3 profiles is observed. However, simulated HCN peak mole fractions overpredict the experimental ones. Reaction pathways analysis performed by using detailed mechanisms reveals that the HCN formation is due to NO-reburning reactions and to reactions from the NH3 subset (via FUN and HNCN). According to the mechanism from Tian et al. (2009), the importance of NH3 subset prevails in NH3 and NO+NH3 doped flames. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:48 / 59
页数:12
相关论文
共 50 条
  • [21] Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames
    Han, Xinlu
    Wang, Zhihua
    Costa, Mario
    Sun, Zhiwei
    He, Yong
    Cen, Kefa
    COMBUSTION AND FLAME, 2019, 206 : 214 - 226
  • [22] EFFECT OF COEXISTING CH4 ON GAS-PHASE FORMATION OF NO, N2O AND HCN THROUGH NH3
    ZHAO, ZS
    MATSUDA, H
    ARAI, N
    HASATANI, M
    KAGAKU KOGAKU RONBUNSHU, 1993, 19 (02) : 169 - 174
  • [23] Combustion of NH3/CH4/Air and NH3/H2/Air Mixtures in a Porous Burner: Experiments and Kinetic Modeling
    Rocha, Rodolfo C.
    Ramos, C. Filipe
    Costa, Mario
    Bai, Xue-Song
    ENERGY & FUELS, 2019, 33 (12) : 12767 - 12780
  • [24] Physical and chemical effects of steam dilution on premixed NH3/O2/ H2O flames
    Zhang, Yu
    Han, Bo
    Zhu, Jinqi
    Zhang, Wenda
    Zhang, Linyao
    Zhao, Yijun
    Sun, Shaozeng
    COMBUSTION AND FLAME, 2025, 275
  • [25] Effect of radiation on laminar flame speed determination in spherically propagating NH3 -air, NH 3/CH4 -air and NH3/H2 -air flames at normal temperature and pressure
    Faghih, Mahdi
    Valera-Medina, Agustin
    Chen, Zheng
    Paykani, Amin
    COMBUSTION AND FLAME, 2023, 257
  • [26] Plasma-Enhanced ALD of Platinum with O2, N2 and NH3 Plasmas
    Longrie, D.
    Devloo-Casier, K.
    Deduytsche, D.
    Van den Berghe, S.
    Driesen, K.
    Detavernier, C.
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2012, 1 (06) : Q123 - Q129
  • [27] Super adiabatic flame temperature phenomenon for NH3/O2/N2 mixtures
    He, Xu
    Liu, Zechang
    Jiang, Houshi
    Yang, Qing
    Jiang, Zhenghui
    Feng, Guangyuan
    Zhao, Chengyuan
    FUEL, 2023, 346
  • [28] Investigation on the flammability limits of CH4/NH3 mixtures at different CH4/NH3 ratios, oxygen concentrations and initial temperatures
    Liu, Xin
    Zhao, Jingyi
    Yuan, Chang
    Hu, Xianzhong
    FUEL, 2025, 381
  • [29] The Effect of Hydrogen Peroxide on NH3/O2 Counterflow Diffusion Flames
    Yang, Wenkai
    Al Khateeb, Ashraf N.
    Kyritsis, Dimitrios C.
    ENERGIES, 2022, 15 (06)
  • [30] Measurements and simulations on effects of elevated pressure and strain rate on NOx emissions in laminar premixed NH3/CH4/air and NH3/H2/air flames
    Wang, Shixing
    Wang, Zhihua
    Roberts, William L.
    FUEL, 2024, 357