Experimental Activity Descriptors for Iridium-Based Catalysts for the Electrochemical Oxygen Evolution Reaction (OER)

被引:170
作者
Spoeri, Camillo [1 ]
Briois, Pascal [2 ]
Hong Nhan Nong [1 ,3 ]
Reier, Tobias [1 ]
Billard, Alain [2 ]
Kuehl, Stefanie [1 ]
Teschner, Detre [3 ,4 ]
Strasser, Peter [1 ]
机构
[1] Tech Univ Berlin, Dept Chem, Electrochem Catalysis Energy & Mat Sci Lab, Str 17 Juni 124, D-10623 Berlin, Germany
[2] Univ Bourgogne Franche Comte, UTBM, CNRS, FEMTO ST,UMR 6174, F-90010 Belfort, France
[3] Max Planck Inst Chem Energy Convers, Stiftstr 34-36, D-45470 Mulheim, Germany
[4] Max Planck Gesell, Fritz Haber Inst, Faradayweg 4-6, D-14195 Berlin, Germany
关键词
electrolysis; OER; electrolyzers; figures of merit; water splitting; catalyst design; volcano relationship; oxide formation and growth; OXIDATION-STATE; WATER OXIDATION; SURFACE-AREA; OXIDE NANOPARTICLES; STABILITY; EFFICIENT; IROX; ELECTROCATALYST; PERFORMANCE; DURABILITY;
D O I
10.1021/acscatal.9b00648
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent progress in the activity improvement of anode catalysts for acidic electrochemical water splitting is largely achieved through empirical studies of iridium-based bimetallic oxides. Practical, experimentally accessible, yet general predictors of catalytic OER activity have remained scarce. This study investigates iridium and iridium-nickel thin film model electrocatalysts for the OER and identifies a set of general ex situ properties that allow the reliable prediction of their OER activity. Well-defined Ir-based catalysts of various chemical nature and composition were synthesized by magnetron sputtering. Correlation of physicochemical and electrocatalytic properties revealed two experimental OER activity descriptors that are able to predict trends in the OER activity of unknown Ir-based catalyst systems. More specifically, our study demonstrates that the IrIII+- and OH-surface concentration of the oxide catalyst constitute closely correlated and generally applicable OER activity predictors. On the basis of these predictors, an experimental volcano relationship of Ir-based OER electrocatalysts is presented and discussed.
引用
收藏
页码:6653 / 6663
页数:21
相关论文
共 50 条
  • [31] Reaction descriptors for the oxygen evolution reaction: Recent advances, challenges, and opportunities
    Craig, Michael John
    Garcia-Melchor, Max
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 35
  • [32] Iridium-Nickel Nanoparticle-Based Aerogels for Oxygen Evolution Reaction
    Park, Seongeun
    Utsch, Nikolai
    Carmo, Marcelo
    Shviro, Meital
    Stolten, Detlef
    ACS APPLIED NANO MATERIALS, 2022, 5 (12) : 18060 - 18069
  • [33] Research Progress on the Application of One-Step Fabrication Techniques for Iridium-Based Thin Films in the Oxygen Evolution Reaction
    Li, Wenting
    Zhu, Junyu
    Cai, Hongzhong
    Tong, Zhongqiu
    Wang, Xian
    Wei, Yan
    Wang, Xingqiang
    Hu, Changyi
    Zhao, Xingdong
    Zhang, Xuxiang
    COATINGS, 2024, 14 (09)
  • [34] A review on electrocatalysis for alkaline oxygen evolution reaction (OER) by Fe-based catalysts
    Xiong, Yi
    He, Ping
    JOURNAL OF MATERIALS SCIENCE, 2023, 58 (05) : 2041 - 2067
  • [35] Selectivity Trends Between Oxygen Evolution and Chlorine Evolution on Iridium-Based Double Perovskites in Acidic Media
    Vos, Johannes G.
    Liu, Zhichao
    Speck, Florian D.
    Perini, Nickson
    Fu, Wentian
    Cherevko, Serhiy
    Koper, Marc T. M.
    ACS CATALYSIS, 2019, 9 (09) : 8561 - 8574
  • [36] Recent development of non-iridium-based electrocatalysts for acidic oxygen evolution reaction
    Shi, Lei
    Zhang, Wenhui
    Li, Jiayu
    Yan, Qing
    Chen, Zhengfei
    Zhou, Xianbo
    Li, Jihong
    Gao, Ruiqin
    Wu, Yuxue
    Li, Guo-Dong
    CARBON NEUTRALIZATION, 2024, 3 (06): : 1101 - 1130
  • [37] Ir nanoparticles with ultrahigh dispersion as oxygen evolution reaction (OER) catalysts: synthesis and activity benchmarking
    Bizzotto, Francesco
    Quinson, Jonathan
    Zana, Alessandro
    Kirkensgaard, Jacob J. K.
    Dworzak, Alexandra
    Oezaslan, Mehtap
    Arenz, Matthias
    CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (22) : 6345 - 6356
  • [38] Towards maximized utilization of iridium for the acidic oxygen evolution reaction
    Ledendecker, Marc
    Geiger, Simon
    Hengge, Katharina
    Lim, Joohyun
    Cherevko, Serhiy
    Mingers, Andrea M.
    Goehl, Daniel
    Fortunato, Guilherme V.
    Jalalpoor, Daniel
    Schueth, Ferdi
    Scheu, Christina
    Mayrhofer, Karl J. J.
    NANO RESEARCH, 2019, 12 (09) : 2275 - 2280
  • [39] Self-supported nanostructured iridium-based networks as highly active electrocatalysts for oxygen evolution in acidic media
    Jensen, Anders W.
    Sievers, Gustav W.
    Jensen, Kim D.
    Quinson, Jonathan
    Arminio-Ravelo, Jose Alejandro
    Brueser, Volker
    Arenz, Matthias
    Escudero-Escribano, Maria
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (03) : 1066 - 1071
  • [40] Highly Active and Stable Iridium Pyrochlores for Oxygen Evolution Reaction
    Lebedev, Dmitry
    Povia, Mauro
    Waltar, Kay
    Abdala, Paula M.
    Castelli, Ivano E.
    Fabbri, Emiliana
    Blanco, Maria V.
    Fedorov, Alexey
    Coperet, Christophe
    Marzari, Nicola
    Schmidt, Thomas J.
    CHEMISTRY OF MATERIALS, 2017, 29 (12) : 5182 - 5191