Critical slowing down in biochemical networks with feedback

被引:8
|
作者
Byrd, Tommy A. [1 ]
Erez, Amir [2 ]
Vogel, Robert M. [3 ]
Peterson, Curtis [1 ,4 ,5 ]
Vennettilli, Michael [1 ]
Altan-Bonnet, Gregoire [6 ]
Mugler, Andrew [1 ]
机构
[1] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
[2] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[3] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[4] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
[5] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
[6] NCI, Immunodynam Grp, Canc & Inflammat Program, NIH, Bethesda, MD 20814 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
EARLY-WARNING SIGNALS; TIPPING POINT; TRANSITIONS; DYNAMICS; MODELS;
D O I
10.1103/PhysRevE.100.022415
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Near a bifurcation point, the response time of a system is expected to diverge due to the phenomenon of critical slowing down. We investigate critical slowing down in well-mixed stochastic models of biochemical feedback by exploiting a mapping to the mean-field Ising universality class. We analyze the responses to a sudden quench and to continuous driving in the model parameters. In the latter case, we demonstrate that our class of models exhibits the Kibble-Zurek collapse, which predicts the scaling of hysteresis in cellular responses to gradual perturbations. We discuss the implications of our results in terms of the tradeoff between a precise and a fast response. Finally, we use our mapping to quantify critical slowing down in T cells, where the addition of a drug is equivalent to a sudden quench in parameter space.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Critical Slowing Down Governs the Transition to Neuron Spiking
    Meisel, Christian
    Klaus, Andreas
    Kuehn, Christian
    Plenz, Dietmar
    PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (02)
  • [2] Critical slowing down indicators
    Nazarimehr, Fahimeh
    Jafari, Sajad
    Perc, Matjaz
    Sprott, Julien C.
    EPL, 2020, 132 (01)
  • [3] Strain-Controlled Critical Slowing Down in the Rheology of Disordered Networks
    Shivers, Jordan L.
    Sharma, Abhinav
    Mackintosh, Fred C.
    PHYSICAL REVIEW LETTERS, 2023, 131 (17)
  • [4] Critical fluctuations and slowing down of chaos
    Das, Moupriya
    Green, Jason R.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [5] No evidence of critical slowing down in two endangered Hawaiian honeycreepers
    Rozek, Jessica C.
    Camp, Richard J.
    Reed, J. Michael
    PLOS ONE, 2017, 12 (11):
  • [6] Critical slowing down as early warning for the onset and termination of depression
    van de Leemput, Ingrid A.
    Wichers, Marieke
    Cramer, Angelique O. J.
    Borsboom, Denny
    Tuerlinckx, Francis
    Kuppens, Peter
    van Nes, Egbert H.
    Viechtbauer, Wolfgang
    Giltay, Erik J.
    Aggen, Steven H.
    Derom, Catherine
    Jacobs, Nele
    Kendler, Kenneth S.
    van der Maas, Han L. J.
    Neale, Michael C.
    Peeters, Frenk
    Thiery, Evert
    Zachar, Peter
    Scheffer, Marten
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (01) : 87 - 92
  • [7] Critical slowing down in a real physical system
    Marconi, Mathias
    Alfaro-Bittner, Karin
    Sarrazin, Lucas
    Giudici, Massimo
    Tredicce, Jorge
    CHAOS SOLITONS & FRACTALS, 2024, 186
  • [8] Detecting critical slowing down in high-dimensional epidemiological systems
    Brett, Tobias
    Ajelli, Marco
    Liu, Quan-Hui
    Krauland, Mary G.
    Grefenstette, John J.
    van Panhuis, Willem G.
    Vespignani, Alessandro
    Drake, John M.
    Rohani, Pejman
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (03)
  • [9] Robustness of variance and autocorrelation as indicators of critical slowing down
    Dakos, Vasilis
    van Nes, Egbert H.
    D'Odorico, Paolo
    Scheffer, Marten
    ECOLOGY, 2012, 93 (02) : 264 - 271
  • [10] Critical Slowing Down Exponents of Mode Coupling Theory
    Caltagirone, F.
    Ferrari, U.
    Leuzzi, L.
    Parisi, G.
    Ricci-Tersenghi, F.
    Rizzo, T.
    PHYSICAL REVIEW LETTERS, 2012, 108 (08)