Chest X-Ray Generation and Data Augmentation for Cardiovascular Abnormality Classification

被引:100
作者
Madani, Ali [1 ]
Moradi, Mehdi [1 ]
Karargyris, Alexandros [1 ]
Syeda-Mahmood, Tanveer [1 ]
机构
[1] Almaden Res Ctr, IBM Res, San Jose, CA 10504 USA
来源
MEDICAL IMAGING 2018: IMAGE PROCESSING | 2018年 / 10574卷
关键词
D O I
10.1117/12.2293971
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Medical imaging datasets are limited in size due to privacy issues and the high cost of obtaining annotations. Augmentation is a widely used practice in deep learning to enrich the data in data-limited scenarios and to avoid overfitting. However, standard augmentation methods that produce new examples of data by varying lighting, field of view, and spatial rigid transformations do not capture the biological variance of medical imaging data and could result in unrealistic images Generative adversarial networks (GANs) provide an avenue to understand the underlying structure of image data which can then be utilized to generate new realistic samples. In this work, we investigate the use of GANs for producing chest X-ray images to augment a dataset. This dataset is then used to train a convolutional neural network to classify images for cardiovascular abnormalities. We compare our augmentation strategy with traditional data augmentation and show higher accuracy for normal vs abnormal classification in chest X-rays.
引用
收藏
页数:6
相关论文
共 16 条
  • [1] [Anonymous], 2015, ARXIV PREPRINT ARXIV
  • [2] [Anonymous], 2017, IEEE T MED IMAGING
  • [3] [Anonymous], 2014, Computer Science
  • [4] [Anonymous], 2016, CoRR
  • [5] [Anonymous], SHE MED IMAGING
  • [6] [Anonymous], INT WORKSH SIM SYNTH
  • [7] [Anonymous], INT WORKSH SIM SYNTH
  • [8] [Anonymous], 2015, COMPUT SCI
  • [9] [Anonymous], INT C MED IM COMP CO
  • [10] [Anonymous], 2014, STAT-US