ANALYSIS OF A STOCHASTIC TWO-PREDATORS ONE-PREY SYSTEM WITH MODIFIED LESLIE-GOWER AND HOLLING-TYPE II SCHEMES

被引:18
|
作者
Xu, Yao [1 ]
Liu, Meng [1 ,2 ]
Yang, Yun [1 ]
机构
[1] Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Peoples R China
[2] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2017年 / 7卷 / 02期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Two-predators one-prey model; stochastic noise; stability in time average; extinction; Ito's formula; POPULATION-DYNAMICS; RANDOM PERTURBATION; LEVY JUMPS; MODEL;
D O I
10.11948/2017045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a stochastic two-predators one-prey model with modified Leslie-Gower and Rolling-type II schemes. Analytically, we completely classify the parameter space into eight categories containing eleven cases. In each case, we show that every population is either stable in time average or extinct, depending on the parameters of the model. Finally, we work out some simulation figures to illustrate the theoretical results.
引用
收藏
页码:713 / 727
页数:15
相关论文
共 43 条