THE VLASOV CONTINUUM LIMIT FOR THE CLASSICAL MICROCANONICAL ENSEMBLE

被引:12
作者
Kiessling, Michael K. -H. [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
Classical statistical mechanics; microcanonical ensemble; unstable interactions; Vlasov continuum limit; entropy; n-point functions; STATISTICAL-MECHANICS DESCRIPTION; MINIMUM LATTICE CONFIGURATIONS; 2-DIMENSIONAL EULER EQUATIONS; STATIONARY FLOWS; THOMSONS PROBLEM; EQUIVALENCE; EQUILIBRIUM; VORTICES; SYSTEMS; CHARGES;
D O I
10.1142/S0129055X09003852
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For classical Hamiltonian N-body systems with mildly regular pair interaction potential (in particular, L-loc(2) integrability is required), it is shown that when N -> infinity in a fixed bounded domain Lambda subset of R-3, with energy epsilon scaling as epsilon proportional to N-2, then Boltzmann's ergodic ensemble entropy S-Lambda(N, epsilon) has the asymptotic expansion S-Lambda(N, N-2 epsilon) = -N ln N + s(Lambda)(epsilon)N + o(N). Here, the N ln N term is combinatorial in origin and independent of the rescaled Hamiltonian, while s(Lambda)(epsilon) is the system-specific Boltzmann entropy per particle, i.e. - s(Lambda)(epsilon) is the minimum of Boltzmann's H function for a perfect gas of energy e subjected to a combination of externally and self-generated fields. It is also shown that any limit point of the n-point marginal ensemble measures is a linear convex superposition of n-fold products of the H-function-minimizing one-point functions. The proofs are direct, in the sense that (a) the map epsilon bar right arrow S(epsilon) is studied rather than its inverse S bar right arrow E(S); (b) no regularization of the microcanonical measure delta(epsilon - H) is invoked, and (c) no detour via the canonical ensemble. The proofs hold irrespective of whether microcanonical and canonical ensembles are equivalent or not.
引用
收藏
页码:1145 / 1195
页数:51
相关论文
共 46 条
[1]   Possible global minimum lattice configurations for Thomson's problem of charges on a sphere [J].
Altschuler, EL ;
Williams, TJ ;
Ratner, ER ;
Tipton, R ;
Stong, R ;
Dowla, F ;
Wooten, F .
PHYSICAL REVIEW LETTERS, 1997, 78 (14) :2681-2685
[2]  
[Anonymous], 1967, Commun. Math. Phys.
[3]  
[Anonymous], 1984, CBMSNSF REGIONAL C S
[4]  
[Anonymous], USP MAT NAUK
[5]  
[Anonymous], LECT NOTES PHYS
[6]  
[Anonymous], 1896, VORLESUNGEN GASTHEOR
[7]  
Boltzmann L, 1896, Vorlesungen uber Gastheorie. Theorie der Gase mit einatomigen Molekulen, deren Dimensionen gegen die mittlere Weglange verschwinden1-2
[8]   A SPECIAL-CLASS OF STATIONARY FLOWS FOR 2-DIMENSIONAL EULER EQUATIONS - A STATISTICAL-MECHANICS DESCRIPTION .2. [J].
CAGLIOTI, E ;
LIONS, PL ;
MARCHIORO, C ;
PULVIRENTI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 174 (02) :229-260
[9]   A SPECIAL-CLASS OF STATIONARY FLOWS FOR 2-DIMENSIONAL EULER EQUATIONS - A STATISTICAL-MECHANICS DESCRIPTION [J].
CAGLIOTI, E ;
LIONS, PL ;
MARCHIORO, C ;
PULVIRENTI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 143 (03) :501-525
[10]   STATISTICS OF 2-DIMENSIONAL POINT VORTICES AND HIGH-ENERGY VORTEX STATES [J].
CAMPBELL, LJ ;
ONEIL, K .
JOURNAL OF STATISTICAL PHYSICS, 1991, 65 (3-4) :495-529