Spectral stability of metric-measure Laplacians

被引:9
作者
Burago, Dmitri [1 ]
Ivanov, Sergei [2 ]
Kurylev, Yaroslav [3 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Russian Acad Sci, Steklov Math Inst, St Petersburg Dept, Fontanka 27, St Petersburg 191023, Russia
[3] UCL, Dept Math, Gower St, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
MEASURE-SPACES; GEOMETRY;
D O I
10.1007/s11856-019-1865-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a "convolution mm-Laplacian" operator on metric-measure spaces and study its spectral properties. The definition is based on averaging over small metric balls. For reasonably nice metric-measure spaces we prove stability of convolution Laplacian's spectrum with respect to metric-measure perturbations and obtain Weyl-type estimates on the number of eigenvalues.
引用
收藏
页码:125 / 158
页数:34
相关论文
共 23 条
[1]  
[Anonymous], 1997, C BOARD MATH SCI
[2]  
[Anonymous], 1958, Can. J. Math., DOI [10.4153/CJM-1958-052-0, DOI 10.4153/CJM-1958-052-0]
[3]  
Burago D., 2001, CRM P LECT NOTES, V33, DOI 10.1090/gsm/033
[4]   A graph discretization of the Laplace-Beltrami operator [J].
Burago, Dmitri ;
Ivanov, Sergei ;
Kurylev, Yaroslav .
JOURNAL OF SPECTRAL THEORY, 2014, 4 (04) :675-714
[5]  
Fremlin D.H., 2006, MEASURE THEORY, V4
[6]   COLLAPSING OF RIEMANNIAN-MANIFOLDS AND EIGENVALUES OF LAPLACE OPERATOR [J].
FUKAYA, K .
INVENTIONES MATHEMATICAE, 1987, 87 (03) :517-547
[7]   On the heat flow on metric measure spaces: existence, uniqueness and stability [J].
Gigli, Nicola .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 39 (1-2) :101-120
[8]  
Hall P., 1935, J London Math Soc, Vs1-10, P26, DOI [10.1112/jlms/s1-10.1.128, DOI 10.1112/JLMS/S1-10.1.128, 10.1112/jlms/s1-10.37.26, DOI 10.1112/JLMS/S1-10.37.26]
[9]  
KOREVAAR NJ, 1993, COMMUN ANAL GEOM, V1, P561
[10]  
Kuwae K, 2003, J REINE ANGEW MATH, V555, P39