MOGPTK: The multi-output Gaussian process toolkit

被引:29
作者
de Wolff, Taco [1 ]
Cuevas, Alejandro [1 ]
Tobar, Felipe [1 ]
机构
[1] Univ Chile, Ctr Math Modeling, Santiago, Chile
关键词
Gaussian processes; Multi-output; MOGP; PyTorch; TensorFlow; Time series;
D O I
10.1016/j.neucom.2020.09.085
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present MOGPTK, a Python package for multi-channel data modelling using Gaussian processes (GP). The aim of this toolkit is to make multi-output GP (MOGP) models accessible to researchers, data scientists, and practitioners alike. MOGPTK uses a Python front-end and relies on the PyTorch suite, thus enabling GPU-accelerated training. The toolkit facilitates implementing the entire pipeline of GP modelling, including data loading, parameter initialization, model learning, parameter interpretation, up to data imputation and extrapolation. MOGPTK implements the main multi-output covariance kernels from literature, as well as spectral-based parameter initialization strategies. The source code, tutorials and examples in the form of Jupyter notebooks, together with the API documentation, can be found in this GitHub repository: https://github.com/GAMES-UChile/mogptk. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 53
页数:5
相关论文
共 17 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
[Anonymous], 2009, Advances in Neural Information Processing Systems
[3]  
Bonilla E. V., 2007, P 20 INT C NEUR INF, P153
[4]   On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario [J].
De Vito, S. ;
Massera, E. ;
Piga, A. ;
Martinotto, L. ;
Di Francia, G. .
SENSORS AND ACTUATORS B-CHEMICAL, 2008, 129 (02) :750-757
[5]  
de Wolff T, 2020, INT CONF ACOUST SPEE, P8444, DOI [10.1109/ICASSP40776.2020.9054102, 10.1109/icassp40776.2020.9054102]
[6]  
Gardner JR, 2018, ADV NEUR IN, V31
[7]  
Goovaerts P, 1997, GEOSTATISTICS NATURA, DOI DOI 10.2113/GSEEGEOSCI.IV.2.278
[8]  
GPy, 2012, GPY GAUSS PROC FRAM
[9]  
Lawrence N.D., 2015, GPMAT
[10]  
Matthews AGD, 2017, J MACH LEARN RES, V18, P1