Insights into the Protein Functions and Absorption Wavelengths of Microbial Rhodopsins

被引:18
|
作者
Tsujimura, Masaki [1 ]
Ishikita, Hiroshi [1 ,2 ]
机构
[1] Univ Tokyo, Dept Appl Chem, Tokyo 1138654, Japan
[2] Univ Tokyo, Res Ctr Adv Sci & Technol, Tokyo 1138654, Japan
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2020年 / 124卷 / 52期
关键词
SENSORY RHODOPSIN; CRYSTAL-STRUCTURE; MOLECULAR-DYNAMICS; HISTIDINE-RESIDUES; BINDING POCKET; IMIDAZOLE RING; SPECTRAL SHIFT; ACID-BASE; BACTERIORHODOPSIN; MECHANISM;
D O I
10.1021/acs.jpcb.0c08910
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using a quantum mechanical/molecular mechanical approach, the absorption wavelength of the retinal Schiff base was calculated based on 13 microbial rhodopsin crystal structures. The results showed that the protein electrostatic environment decreases the absorption wavelength significantly in the cation-conducting rhodopsin but only slightly in the sensory rhodopsin. Among the microbial rhodopsins with different functions, the differences in the absorption wavelengths are caused by differences in the arrangement of the charged residues at the retinal Schiff base binding moiety, namely, one or two counterions at the three common positions. Among the microbial rhodopsins with similar functions, the differences in the polar residues at the retinal Schiff base binding site are responsible for the differences in the absorption wavelengths. Counterions contribute to an absorption wavelength shift of 50-120 nm, whereas polar groups contribute to a shift of up to similar to 10 nm. It seems likely that protein function is directly associated with the absorption wavelength in microbial rhodopsins.
引用
收藏
页码:11819 / 11826
页数:8
相关论文
共 50 条
  • [11] Imaging voltage with microbial rhodopsins
    Cohen, A. E.
    Kralj, J.
    Hochbaum, D.
    Douglass, A.
    Venkatachalam, V.
    Maclaurin, D.
    MOLECULAR BIOLOGY OF THE CELL, 2012, 23
  • [12] Mechanism divergence in microbial rhodopsins
    Spudich, John L.
    Sineshchekov, Oleg A.
    Govorunova, Elena G.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2014, 1837 (05): : 546 - 552
  • [13] The multitalented microbial sensory rhodopsins
    Spudich, John L.
    TRENDS IN MICROBIOLOGY, 2006, 14 (11) : 480 - 487
  • [14] Global abundance of microbial rhodopsins
    Finkel, Omri M.
    Beja, Oded
    Belkin, Shimshon
    ISME JOURNAL, 2013, 7 (02): : 448 - 451
  • [15] The road to optogenetics: Microbial rhodopsins
    Govorunova, E. G.
    Koppel, L. A.
    BIOCHEMISTRY-MOSCOW, 2016, 81 (09) : 928 - 940
  • [16] Global abundance of microbial rhodopsins
    Omri M Finkel
    Oded Béjà
    Shimshon Belkin
    The ISME Journal, 2013, 7 : 448 - 451
  • [17] Imaging Voltage with Microbial Rhodopsins
    Zhang, Xiao Min
    Yokoyama, Tatsushi
    Sakamoto, Masayuki
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 8
  • [18] The road to optogenetics: Microbial rhodopsins
    E. G. Govorunova
    L. A. Koppel
    Biochemistry (Moscow), 2016, 81 : 928 - 940
  • [19] Optogenetic manipulation of neuronal and cardiomyocyte functions in zebrafish using microbial rhodopsins and adenylyl cyclases
    Hagio, Hanako
    Koyama, Wataru
    Hosaka, Shiori
    Song, Aysenur Deniz
    Narantsatsral, Janchiv
    Matsuda, Koji
    Shimizu, Takashi
    Hososhima, Shoko
    Tsunoda, Satoshi P.
    Kandori, Hideki
    Hibi, Masahiko
    ELIFE, 2023, 12
  • [20] Microbial Rhodopsins: The Last Two Decades
    Rozenberg, Andrey
    Inoue, Keiichi
    Kandori, Hideki
    Beja, Oded
    ANNUAL REVIEW OF MICROBIOLOGY, VOL 75, 2021, 2021, 75 : 427 - 447