On finite groups with non-nilpotent subgroups

被引:2
作者
Lu, Jiakuan [1 ]
Meng, Wei [2 ]
机构
[1] Guangxi Normal Univ, Sch Math & Stat, Guilin 541004, Guangxi, Peoples R China
[2] Yunnan Minzu Univ, Sch Math & Comp Sci, Kunming 650031, Yunnan, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2016年 / 179卷 / 01期
基金
中国国家自然科学基金;
关键词
Non-nilpotent subgroups; Non-normal subgroups; Solvable groups;
D O I
10.1007/s00605-014-0712-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite group G , let l(G) denote the number of conjugacy classes of non-normal non-nilpotent subgroups of G . In this paper, we show that every finite group G satisfying l(G) <vertical bar pi(G)vertical bar is solvable, and for a finite non-solvable group l(G) <vertical bar pi(G)vertical bar if and only if or SL(2,5).
引用
收藏
页码:99 / 103
页数:5
相关论文
共 11 条
[1]  
[Anonymous], 1968, Finite Groups
[2]  
Belonogov V.A., 1986, MAT SBORNIK, V131, P225
[3]  
Huppert B., 1967, GRUND MATH WISS, V134
[4]  
Janko, 1962, MATH Z, V79, P422, DOI [10.1007/BF01193133, DOI 10.1007/BF01193133]
[5]   Finite groups with non-nilpotent maximal subgroups [J].
Lu, Jiakuan ;
Pang, Linna ;
Zhong, Xianggui .
MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4) :425-431
[6]   Lower bounds on conjugacy classes of non-nilpotent subgroups in a finite group [J].
Meng, Wei ;
Lu, Jiakuan .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (03)
[7]  
Pazderski G, 1963, MATH NACHR, V26, P307
[8]  
Robinson D., 1996, GRADUATE TEXTS MATH
[9]  
ROSE JS, 1965, J LONDON MATH SOC, V40, P348
[10]   FINITE INSOLUBLE GROUPS WITH NILPOTENT MAXIMAL SUBGROUPS [J].
ROSE, JS .
JOURNAL OF ALGEBRA, 1977, 48 (01) :182-196