Ti3C2Tx MXene-Based Micro-Supercapacitors with Ultrahigh Volumetric Energy Density for All-in-One Si-Electronics

被引:75
|
作者
Huang, Haichao [1 ]
Chu, Xiang [1 ]
Xie, Yanting [1 ]
Zhang, Binbin [1 ]
Wang, Zixing [1 ]
Duan, Zhongyi [1 ]
Chen, Ningjun [1 ]
Xu, Zhong [1 ]
Zhang, Haitao [1 ]
Yang, Weiqing [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Minist Educ, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
Ti3C2Tx MXene; microsupercapacitors; high operating voltage; high energy density; all-in-one Si-electronics; CARBON-FILMS; FABRICATION; CHIP;
D O I
10.1021/acsnano.1c08172
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MXene-based microsupercapacitors (MSCs) have promoted the development of on-chip energy storage for miniaturized and portable electronics due to the small size, high power density and integration density. However, restricted energy density and operating voltage invariably create obstacles to the practical application of MSCs. Here, we report a symmetric MXene-based on-chip MSC, achieving an ultrahigh energy density of 75 mWh cm(-3) with high operating voltage of 1.2 V, which are almost the highest values among all reported symmetric MXene MSCs. The adjustment strategy of acetone on the viscosity and surface tension of MXene ink, along with the natural sedimentation strategy, can effectively prevent the orderly stacking of MXene sheets. Further, we developed an all-in-one Si-electronics with three series MSCs through laser-etching technology, obviously presenting high integration capacity and processing compatibility. Thus, this work will contribute to the development of high integration all-in-one electronics with high energy density MXene-based MSCs.
引用
收藏
页码:3776 / 3784
页数:9
相关论文
共 50 条
  • [1] Microscale Curling and Alignment of Ti3C2Tx MXene by Confining Aerosol Droplets for Planar Micro-Supercapacitors
    Wu, Yu
    Zhao, Danjiao
    Zhang, Jidi
    Lin, Aiping
    Wang, Yu
    Cao, Lei
    Wang, Shufen
    Xiong, Shixian
    Gu, Feng
    ACS OMEGA, 2021, 6 (48): : 33067 - 33074
  • [2] Unraveling and Regulating Self-Discharge Behavior of Ti3C2Tx MXene-Based Supercapacitors
    Wang, Zixing
    Xu, Zhong
    Huang, Haichao
    Chu, Xiang
    Xie, Yanting
    Xiong, Da
    Yan, Cheng
    Zhao, Haibo
    Zhang, Haitao
    Yang, Weiqing
    ACS NANO, 2020, 14 (04) : 4916 - 4924
  • [3] Fabrication and characterization of Ti3C2TX MXene-based bipolar membrane
    Celik, Aytekin
    Aksoy, Yunus
    Hanay, Ozge
    Yegin, Mustafa
    Kose, Yusuf
    Demirelli, Kadir
    Hasar, Halil
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2024, : 1281 - 1294
  • [4] Ti3C2Tx MXene-Based Flexible Piezoresistive Physical Sensors
    Wang, Yongxin
    Yue, Yang
    Cheng, Feng
    Cheng, Yongfa
    Ge, Binghui
    Liu, Nishuang
    Gao, Yihua
    ACS NANO, 2022, 16 (02) : 1734 - 1758
  • [5] Ti3C2Tx MXene for electrode materials of supercapacitors
    Ma, Rui
    Chen, Zetong
    Zhao, Danna
    Zhang, Xujing
    Zhuo, Jingting
    Yin, Yajiang
    Wang, Xiaofeng
    Yang, Guowei
    Yi, Fang
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (19) : 11501 - 11529
  • [6] Fabrication and characterization of Ti3C2TX MXene-based bipolar membrane
    Çelik, Aytekin
    Aksoy, Yunus
    Hanay, Özge
    Yegin, Mustafa
    Köse, Yusuf
    Demirelli, Kadir
    Hasar, Halil
    Journal of Applied Electrochemistry, 2024,
  • [7] Fe2O3 Nanoparticles Anchored on the Ti3C2Tx MXene Paper for Flexible Supercapacitors with Ultrahigh Volumetric Capacitance
    Ma, Yonglu
    Sheng, Hongwei
    Dou, Wei
    Su, Qing
    Zhou, Jinyuan
    Xie, Erqing
    Lan, Wei
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (37) : 41410 - 41418
  • [8] Ti3C2Tx MXene for wearable energy devices: Supercapacitors and triboelectric nanogenerators
    Nam, Sanghee
    Kim, Jong-Nam
    Oh, Saewoong
    Kim, Jaehwan
    Ahn, Chi Won
    Oh, Il-Kwon
    APL MATERIALS, 2020, 8 (11)
  • [9] Aerosol Jet Printing of Hybrid Ti3C2Tx/C Nanospheres for Planar Micro-supercapacitors
    Wu, Yu
    Lin, Aiping
    Zhang, Jidi
    Zhao, Danjiao
    Fan, Lanlan
    Lu, Cheng
    Wang, Shufen
    Cao, Lei
    Gu, Feng
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [10] The prior rules of designing Ti3C2Tx MXene-based gas sensors
    Yingying Jian
    Danyao Qu
    Lihao Guo
    Yujin Zhu
    Chen Su
    Huanran Feng
    Guangjian Zhang
    Jia Zhang
    Weiwei Wu
    Ming-Shui Yao
    Frontiers of Chemical Science and Engineering, 2021, 15 : 505 - 517