Electrospun polyaniline/polyvinyl alcohol/multiwalled carbon nanotubes nanofibers as promising bioanode material for biofuel cells

被引:13
作者
Beenish [1 ]
Inamuddin [1 ]
Asiri, Abdullah M. [2 ,3 ]
机构
[1] Aligarh Muslim Univ, Fac Engn & Technol, Dept Appl Chem, Adv Funct Mat Lab, Aligarh 202002, Uttar Pradesh, India
[2] King Abdulaziz Univ, Fac Sci, Dept Chem, POB 80203, Jeddah 21589, Saudi Arabia
[3] King Abdulaziz Univ, Ctr Excellence Adv Mat Res, POB 80203, Jeddah 21589, Saudi Arabia
关键词
Polyaniline; Electrospun nanofibers; Bioanode; iofuel cells; Multiwalled carbon nanotubes; Ferritin; GLUCOSE-OXIDASE; FUEL-CELLS; IMMOBILIZATION; COMPOSITES; BLENDS;
D O I
10.1016/j.jelechem.2017.02.025
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The polyaniline/polyvinyl alcohol/multiwalled carbon nanotubes (PANI/PVA/MWCNTs) composite nanofibers were synthesized using electrospinning technique. Nanofibres morphology was characterized by using scanning electron microscopy (SEM). The electrospun PANI/PVA/MWCNTs nanofibres With average diameter Of about 60100 nm exhibited smooth surface at higher magnifications of x25000. The PANI/PVA/MWCNTs nanofibres modified electrode showed good electron transfer behavior because of the excellent properties of carbon nanotubes and the three dimensional and porous structures of electrospun nanofibres. The enzyme glucose oxidase (GOx) covalently immobilized with PANI/PVA/MWCNTs nanofibres exhibited good electrocatalytic activity towards oxidation of glucose through redox active as well as biocompatible mediator ferritin (FRT). The maximum current density using this nanostructured bioanode was 7.5 mA cm(-2) at 100 mVs(-1) vs Ag/AgC1 in a 20 mM glucose solution. The heterogeneous electron transfer rate constant (Ks) was found to be 3.09 s(-1). The results indicated that these electrospun PANI/PVA/MWCNTs nanofibres have potential to be used in BFC device as anode. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:181 / 187
页数:7
相关论文
共 42 条
[1]   Synthesis and morphological characterization of PMMA/polyaniline nanofiber composites [J].
Araújo, PLB ;
Araújo, ES ;
Santos, RFS ;
Pacheco, APL .
MICROELECTRONICS JOURNAL, 2005, 36 (11) :1055-1057
[2]   Enzymatic biofuel cells for Implantable and microscale devices [J].
Barton, SC ;
Gallaway, J ;
Atanassov, P .
CHEMICAL REVIEWS, 2004, 104 (10) :4867-4886
[3]   Biofuel cells and their development [J].
Bullen, RA ;
Arnot, TC ;
Lakeman, JB ;
Walsh, FC .
BIOSENSORS & BIOELECTRONICS, 2006, 21 (11) :2015-2045
[4]   Synthesis and electrical properties of polymer composites with polyaniline nanoparticles [J].
Cho, MS ;
Park, SY ;
Hwang, JY ;
Choi, HJ .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2004, 24 (1-2) :15-18
[5]   Polyaniline/Single-Walled Carbon Nanotubes Composite Based Triglyceride Biosensor [J].
Dhand, Chetna ;
Solanki, Pratima R. ;
Datta, Monika ;
Malhotra, B. D. .
ELECTROANALYSIS, 2010, 22 (22) :2683-2693
[6]   Glucose Oxidase Directly Immobilized onto Highly Porous Gold Electrodes for Sensing and Fuel Cell applications [J].
du Toit, Hendrik ;
Di Lorenzo, Mirella .
ELECTROCHIMICA ACTA, 2014, 138 :86-92
[7]   Cross-linked glucose oxidase clusters for biofuel cell anode catalysts [J].
Dudzik, Jonathan ;
Chang, Wen-Chi ;
Kannan, A. M. ;
Filipek, Slawomir ;
Viswanathan, Sowmya ;
Li, Pingzuo ;
Renugopalakrishnan, V. ;
Audette, Gerald F. .
BIOFABRICATION, 2013, 5 (03)
[8]   Immobilization of glucose oxidase in electrospun nanofibrous membranes for food preservation [J].
Ge, Ling ;
Zhao, Yu-sheng ;
Mo, Ting ;
Li, Jian-rong ;
Li, Ping .
FOOD CONTROL, 2012, 26 (01) :188-193
[9]   Biohybrid nanosystems with polymer nanofibers and nanotubes [J].
Greiner, A. ;
Wendorff, J. H. ;
Yarin, A. L. ;
Zussman, E. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2006, 71 (04) :387-393
[10]   Miniature biofuel cells [J].
Heller, A .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (02) :209-216