A recast Nafion/graphene oxide composite membrane for advanced vanadium redox flow batteries

被引:102
作者
Yu, Lihong [1 ]
Lin, Feng [1 ]
Xu, Ling [1 ]
Xi, Jingyu [2 ]
机构
[1] Shenzhen Polytech, Sch Appl Chem & Biol Technol, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Grad Sch Shenzhen, Inst Green Chem & Energy, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
ANION-EXCHANGE MEMBRANES; HIGH-PERFORMANCE; GRAPHENE OXIDE; ENERGY-STORAGE; HYBRID MEMBRANE; DEGRADATION; CHEMISTRY; MECHANISM;
D O I
10.1039/c5ra24317c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A graphene oxide (GO) nanosheet incorporated recast Nafion membrane (rNafion/GO) is applied to a vanadium redox flow battery (VRFB) as a promising ion-exchange membrane to reduce the vanadium permeation. Randomly embedded GO nanosheets in the composite membrane can serve as effective barriers to block the transport of vanadium ions, resulting in significant decrease of vanadium ion permeability. The rNafion/GO composite membrane exhibits a dense and homogeneous cross-section morphology as shown by SEM images. The hydrogen-bonding interaction between GO nanosheet filler and Nafion matrix is beneficial for the improvement of mechanical stability. Owing to the good balance of proton conductivity and vanadium ion permeability, the VRFB single cell performance of the rNafion/GO membrane shows higher coulombic efficiency (96% vs. 91%) and energy efficiency (85% vs. 80%) than the pure rNafion membrane at a current density of 80 mA cm(-2). A long cycling test confirms that the rNafion/GO membrane has superior chemical and mechanical stability and can be repeatedly used in a VRFB without any damage, revealing the advancement for practical VRFB application.
引用
收藏
页码:3756 / 3763
页数:8
相关论文
共 44 条
[1]   Redox Flow Batteries: An Engineering Perspective [J].
Chalamala, Babu R. ;
Soundappan, Thiagarajan ;
Fisher, Graham R. ;
Anstey, Mitchell R. ;
Viswanathan, Vilayanur V. ;
Perry, Michael L. .
PROCEEDINGS OF THE IEEE, 2014, 102 (06) :976-999
[2]   V5+ degradation of sulfonated Radel membranes for vanadium redox flow batteries [J].
Chen, Dongyang ;
Hickner, Michael A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (27) :11299-11305
[3]   SPEEK/Graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery [J].
Dai, Wenjing ;
Shen, Yi ;
Li, Zhaohua ;
Yu, Lihong ;
Xi, Jingyu ;
Qiu, Xinping .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (31) :12423-12432
[4]   Sulfonated Poly(Ether Ether Ketone)/Graphene composite membrane for vanadium redox flow battery [J].
Dai, Wenjing ;
Yu, Lihong ;
Li, Zhaohua ;
Yan, Jia ;
Liu, Le ;
Xi, Jingyu ;
Qiu, Xinping .
ELECTROCHIMICA ACTA, 2014, 132 :200-207
[5]   Uncovering the Structure of Nafion-SiO2 Hybrid Ionomer Membranes for Prospective Large-Scale Energy Storage Devices [J].
Davis, Eric M. ;
Kim, Jenny ;
Oleshko, Vladimir P. ;
Page, Kirt A. ;
Soles, Christopher L. .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (26) :4064-4075
[6]   Vanadium Flow Battery for Energy Storage: Prospects and Challenges [J].
Ding, Cong ;
Zhang, Huamin ;
Li, Xianfeng ;
Liu, Tao ;
Xing, Feng .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (08) :1281-1294
[7]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[8]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[9]   The effect of sulfonated graphene oxide on Sulfonated Poly (Ether Ether Ketone) membrane for direct methanol fuel cells [J].
Heo, Yuseon ;
Im, Hyungu ;
Kim, Jooheon .
JOURNAL OF MEMBRANE SCIENCE, 2013, 425 :11-22
[10]   Graphene Oxide Nanosheet with High Proton Conductivity [J].
Karim, Mohammad Razaul ;
Hatakeyama, Kazuto ;
Matsui, Takeshi ;
Takehira, Hiroshi ;
Taniguchi, Takaaki ;
Koinuma, Michio ;
Matsumoto, Yasumichi ;
Akutagawa, Tomoyuki ;
Nakamura, Takayoshi ;
Noro, Shin-ichiro ;
Yamada, Teppei ;
Kitagawa, Hiroshi ;
Hayami, Shinya .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (22) :8097-8100