Time fractional Schrodinger equation

被引:401
作者
Naber, M [1 ]
机构
[1] Monroe Cty Community Coll, Dept Math, Monroe, MI 48161 USA
关键词
D O I
10.1063/1.1769611
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Schrodinger equation is considered with the first order time derivative changed to a Caputo fractional derivative, the time fractional Schrodinger equation. The resulting Hamiltonian is found to be non-Hermitian and nonlocal in time. The resulting wave functions are thus not invariant under time reversal. The time fractional Schrodinger equation is solved for a free particle and for a potential well. Probability and the resulting energy levels are found to increase over time to a limiting value depending on the order of the time derivative. New identities for the Mittag-Leffler function are also found and presented in an Appendix. (C) 2004 American Institute of Physics.
引用
收藏
页码:3339 / 3352
页数:14
相关论文
共 50 条
  • [31] Fractional nonlinear Schrodinger equation
    Mendez-Navarro, Jesus A.
    Naumkin, Pavel I.
    Sanchez-Suarez, Isahi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06):
  • [32] On the nonlocality of the fractional Schrodinger equation
    Jeng, M.
    Xu, S. -L. -Y.
    Hawkins, E.
    Schwarz, J. M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (06)
  • [33] Multidimensional Fractional Schrodinger equation
    Rodrigues, M. M.
    Vieira, N.
    9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 798 - 804
  • [34] Discrete Fractional Solutions of the Radial Equation of the Fractional Schrodinger Equation
    Yilmazer, Resat
    Ozturk, Okkes
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [35] Space-time fractional Schrodinger equation with time-independent potentials
    Dong, Jianping
    Xu, Mingyu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) : 1005 - 1017
  • [36] On fractional Schrodinger equation in α-dimensional fractional space
    Eid, Rajeh
    Muslih, Sami I.
    Baleanu, Dumitru
    Rabei, E.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (03) : 1299 - 1304
  • [37] Fractional Schrodinger equation in optics
    Longhi, Stefano
    OPTICS LETTERS, 2015, 40 (06) : 1117 - 1120
  • [38] Analytic and Numerical Solutions of Time-Fractional Linear Schrodinger Equation
    Edeki, S. O.
    Akinlabi, G. O.
    Adeosun, S. A.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2016, 7 (01): : 1 - 10
  • [39] FINITE ELEMENT METHOD FOR TIME-SPACE-FRACTIONAL SCHRODINGER EQUATION
    Zhu, Xiaogang
    Yuan, Zhanbin
    Wang, Jungang
    Nie, Yufeng
    Yang, Zongze
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [40] The global analysis on the spectral collocation method for time fractional Schrodinger equation
    Zheng, Minling
    Liu, Fawang
    Jin, Zhengmeng
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 365