Time fractional Schrodinger equation

被引:397
|
作者
Naber, M [1 ]
机构
[1] Monroe Cty Community Coll, Dept Math, Monroe, MI 48161 USA
关键词
D O I
10.1063/1.1769611
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Schrodinger equation is considered with the first order time derivative changed to a Caputo fractional derivative, the time fractional Schrodinger equation. The resulting Hamiltonian is found to be non-Hermitian and nonlocal in time. The resulting wave functions are thus not invariant under time reversal. The time fractional Schrodinger equation is solved for a free particle and for a potential well. Probability and the resulting energy levels are found to increase over time to a limiting value depending on the order of the time derivative. New identities for the Mittag-Leffler function are also found and presented in an Appendix. (C) 2004 American Institute of Physics.
引用
收藏
页码:3339 / 3352
页数:14
相关论文
共 50 条
  • [21] On the space-time fractional Schrodinger equation with time independent potentials
    Baqer, Saleh
    Boyadjiev, Lyubomir
    PANORAMA OF MATHEMATICS: PURE AND APPLIED, 2016, 658 : 81 - 90
  • [22] Fractional optical solitons of the space-time fractional nonlinear Schrodinger equation
    Wu, Gang-Zhou
    Yu, Li-Jun
    Wang, Yue-Yue
    OPTIK, 2020, 207
  • [23] THE FRACTIONAL COMPLEX TRANSFORM: A NOVEL APPROACH TO THE TIME-FRACTIONAL SCHRoDINGER EQUATION
    Ain, Qura Tul
    He, Ji-Huan
    Anjum, Naveed
    Ali, Muhammad
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (07)
  • [24] Fractional Schrodinger equation; solvability and connection with classical Schrodinger equation
    Bezerra, Flank D. M.
    Carvalho, Alexandre N.
    Dlotko, Tomasz
    Nascimento, Marcelo J. D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (01) : 336 - 360
  • [25] Fractional time-dependent Schrodinger equation on the Heisenberg group
    Urban, Roman
    Zienkiewicz, Jacek
    MATHEMATISCHE ZEITSCHRIFT, 2008, 260 (04) : 931 - 948
  • [26] The Numerical Computation of the Time Fractional Schrodinger Equation on an Unbounded Domain
    Li, Dan
    Zhang, Jiwei
    Zhang, Zhimin
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2018, 18 (01) : 77 - 94
  • [27] A Time-Fractional Schrodinger Equation with Singular Potentials on the Boundary
    Alazman, Ibtehal
    Jleli, Mohamed
    Samet, Bessem
    FRACTAL AND FRACTIONAL, 2023, 7 (06)
  • [28] The asymptotic behavior of the time fractional Schrodinger equation on Hilbert space
    Gorka, Przemyslaw
    Prado, Humberto
    Pons, Daniel J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (03)
  • [29] Stability estimate for a time fractional Schrodinger equation with half order
    Fu, Xiaoyu
    Gao, Yuan
    Zheng, Chuang
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 1061 - 1066
  • [30] Time dependent solutions for a fractional Schrodinger equation with delta potentials
    Lenzi, E. K.
    Ribeiro, H. V.
    dos Santos, M. A. F.
    Rossato, R.
    Mendes, R. S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (08)