Calculation of the cumulative distribution function of the time to a small observable tumor

被引:11
|
作者
Sherman, CD
Portier, CJ
机构
[1] San Francisco State Univ, Dept Math, San Francisco, CA 94132 USA
[2] NIEHS, Lab Computat Biol & Risk Assessment, Res Triangle Pk, NC 27709 USA
关键词
D O I
10.1006/bulm.1999.0148
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multistage mathematical models of carcinogenesis (when applied to tumor incidence data) have historically assumed that the growth kinetics of cells in the malignant state are disregarded and the formation of a single malignant cell is equated with the emergence of a detectable tumor. The justification of this simplification is, from a mathematical point of view, to make the estimation of turner incidence rates tractable. However, analytical forms are not mandatory in the estimation of tumor incidence rates. Portier et al.(1996b. Math. Biosci. 135, 129-146) have demonstrated the utility of the Kolmogorov backward equations in numerically calculating tumor incidence. By extending their results, the cumulative distribution function of the time to a small observable tumor may be numerically obtained. (C) 2000 Society for Mathematical Biology.
引用
收藏
页码:229 / 240
页数:12
相关论文
共 50 条
  • [31] Nonparametric estimation of bivariate cumulative distribution function
    Mansouri, Behzad
    Rastin, Azam
    Mombeni, Habib Allah
    ARABIAN JOURNAL OF MATHEMATICS, 2024, : 621 - 632
  • [32] Minimax estimation of a bivariate cumulative distribution function
    Poloczanski, Rafal
    Wilczynski, Maciej
    METRIKA, 2020, 83 (05) : 597 - 615
  • [33] Estimation of inequality indices of the cumulative distribution function
    Naga, Ramses H. Abul
    Stapenhurst, Christopher
    ECONOMICS LETTERS, 2015, 130 : 109 - 112
  • [34] Pseudo-cumulative distribution function with applications
    Hamzeh Agahi
    Hossein Mehri-Dehnavi
    Soft Computing, 2021, 25 : 9693 - 9702
  • [35] On new formulae for cumulative distribution function for McKay Bessel distribution
    Masirevic, Dragana Jankov
    Pogany, Tibor K.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (01) : 143 - 160
  • [36] Arbitrarily Tight Bounds on Cumulative Distribution Function of Beckmann Distribution
    Zhu, Bingcheng
    Zeng, Zhaoquan
    Cheng, Julian
    2017 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), 2016, : 41 - 45
  • [37] THE CALCULATION OF THE CHORD DISTRIBUTION FUNCTION
    KWIAT, D
    NUCLEAR SCIENCE AND ENGINEERING, 1982, 80 (03) : 469 - 473
  • [38] CALCULATION OF CUMULATIVE DISTRIBUTION FUNCTIONS OF PROBABILITIES OF ERRONEOUS SYMBOL RECEPTION
    KAGAN, BD
    PETROV, AD
    TELECOMMUNICATIONS AND RADIO ENGINEERING, 1972, 26 (07) : 118 - 120
  • [39] Deep Learning-Based Cumulative Distribution Function for News Inter-arrival Time
    Deng, Hanxi
    Chen, Chi-Hua
    Fang, Hao
    Guo, Canyang
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2021, 128 : 80 - 81
  • [40] Estimating the cumulative distribution function of lead-time demand using bootstrapping with and without replacement
    Boylan, John E.
    Babai, M. Zied
    INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2022, 252