Calculation of the cumulative distribution function of the time to a small observable tumor

被引:11
|
作者
Sherman, CD
Portier, CJ
机构
[1] San Francisco State Univ, Dept Math, San Francisco, CA 94132 USA
[2] NIEHS, Lab Computat Biol & Risk Assessment, Res Triangle Pk, NC 27709 USA
关键词
D O I
10.1006/bulm.1999.0148
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multistage mathematical models of carcinogenesis (when applied to tumor incidence data) have historically assumed that the growth kinetics of cells in the malignant state are disregarded and the formation of a single malignant cell is equated with the emergence of a detectable tumor. The justification of this simplification is, from a mathematical point of view, to make the estimation of turner incidence rates tractable. However, analytical forms are not mandatory in the estimation of tumor incidence rates. Portier et al.(1996b. Math. Biosci. 135, 129-146) have demonstrated the utility of the Kolmogorov backward equations in numerically calculating tumor incidence. By extending their results, the cumulative distribution function of the time to a small observable tumor may be numerically obtained. (C) 2000 Society for Mathematical Biology.
引用
收藏
页码:229 / 240
页数:12
相关论文
共 50 条
  • [21] Modified cumulative distribution function in application to waiting time analysis in the continuous time random walk scenario
    Poloczanski, Rafal
    Wylomanska, Agnieszka
    Maciejewska, Monika
    Szczurek, Andrzej
    Gajda, Janusz
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (03)
  • [22] Analysis of Cumulative Distribution Function of the Response Time in Cloud Computing Systems with Dynamic Scaling
    Sopin E.S.
    Gorbunova A.V.
    Gaidamaka Y.V.
    Zaripova E.R.
    Automatic Control and Computer Sciences, 2018, 52 (1) : 60 - 66
  • [23] Minimax estimation of the conditional cumulative distribution function
    Brunel E.
    Comte F.
    Lacour C.
    Sankhya A, 2010, 72 (2): : 293 - 330
  • [24] Efficient computation of Hoyt cumulative distribution function
    Tavares, G. N.
    ELECTRONICS LETTERS, 2010, 46 (07) : 537 - 538
  • [25] Kernel estimation of multivariate cumulative distribution function
    Liu, Rong
    Yang, Lijian
    JOURNAL OF NONPARAMETRIC STATISTICS, 2008, 20 (08) : 661 - 677
  • [26] Approximations for cumulative distribution function of standard normal
    Eidous, Omar M.
    Ananbeh, Enas
    JOURNAL OF STATISTICS AND MANAGEMENT SYSTEMS, 2022, 25 (03) : 541 - 547
  • [27] Minimax estimation of a bivariate cumulative distribution function
    Rafał Połoczański
    Maciej Wilczyński
    Metrika, 2020, 83 : 597 - 615
  • [28] Pseudo-cumulative distribution function with applications
    Agahi, Hamzeh
    Mehri-Dehnavi, Hossein
    SOFT COMPUTING, 2021, 25 (15) : 9693 - 9702
  • [29] AN EXPRESSION FOR THE CUMULATIVE DISTRIBUTION FUNCTION OF THE NONCENTRAL T-DISTRIBUTION
    OWEN, DB
    ANNALS OF MATHEMATICAL STATISTICS, 1958, 29 (02): : 615 - 615
  • [30] Quantile cumulative distribution function and its applications
    Mathew, Angel
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (11) : 4194 - 4206