Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients

被引:159
作者
Ahmad, Tariq [1 ,2 ]
Lund, Lars H. [3 ,4 ]
Rao, Pooja [5 ]
Ghosh, Rohit [5 ]
Warier, Prashant [5 ]
Vaccaro, Benjamin [1 ,2 ]
Dahlstrom, Ulf [6 ]
O'Connor, Christopher M. [7 ]
Felker, G. Michael [7 ]
Desai, Nihar R. [1 ,2 ]
机构
[1] Yale Univ, Sch Med, Sect Cardiovasc Med, New Haven, CT USA
[2] Yale Univ, Sch Med, Ctr Outcomes Res, New Haven, CT USA
[3] Karolinska Inst, Dept Med, Dept Cardiol, Stockholm, Sweden
[4] Karolinska Univ Hosp, Stockholm, Sweden
[5] Qure Ai, Mumbai, Maharashtra, India
[6] Linkoping Univ, Dept Med & Hlth Sci, Linkoping, Sweden
[7] Duke Univ, Duke Clin Res Inst, Durham, NC USA
来源
JOURNAL OF THE AMERICAN HEART ASSOCIATION | 2018年 / 7卷 / 08期
基金
瑞典研究理事会;
关键词
heart failure; machine learning; outcomes research; BIG DATA; EJECTION FRACTION; ASSOCIATION; PREDICTION; MORTALITY; MEDICINE; RISK; VALIDATION; SURVIVAL; OUTCOMES;
D O I
10.1161/JAHA.117.008081
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background-Whereas heart failure (HF) is a complex clinical syndrome, conventional approaches to its management have treated it as a singular disease, leading to inadequate patient care and inefficient clinical trials. We hypothesized that applying advanced analytics to a large cohort of HF patients would improve prognostication of outcomes, identify distinct patient phenotypes, and detect heterogeneity in treatment response. Methods and Results-The Swedish Heart Failure Registry is a nationwide registry collecting detailed demographic, clinical, laboratory, and medication data and linked to databases with outcome information. We applied random forest modeling to identify predictors of 1-year survival. Cluster analysis was performed and validated using serial bootstrapping. Association between clusters and survival was assessed with Cox proportional hazards modeling and interaction testing was performed to assess for heterogeneity in response to HF pharmacotherapy across propensity-matched clusters. Our study included 44 886 HF patients enrolled in the Swedish Heart Failure Registry between 2000 and 2012. Random forest modeling demonstrated excellent calibration and discrimination for survival (C-statistic=0.83) whereas left ventricular ejection fraction did not (C-statistic=0.52): there were no meaningful differences per strata of left ventricular ejection fraction (1-year survival: 80%, 81%, 83%, and 84%). Cluster analysis using the 8 highest predictive variables identified 4 clinically relevant subgroups of HF with marked differences in 1-year survival. There were significant interactions between propensity-matched clusters (across age, sex, and left ventricular ejection fraction and the following medications: diuretics, angiotensin-converting enzyme inhibitors, )i-blockers, and nitrates, P<0.001, all). Conclusions-Machine learning algorithms accurately predicted outcomes in a large data set of HF patients. Cluster analysis identified 4 distinct phenotypes that differed significantly in outcomes and in response to therapeutics. Use of these novel analytic approaches has the potential to enhance effectiveness of current therapies and transform future HF clinical trials.
引用
收藏
页数:14
相关论文
共 35 条
[1]   Can Big Data Simplify the Complexity of Modern Medicine? Prediction of Right Ventricular Failure After Left Ventricular Assist Device Support as a Test Case [J].
Ahmad, Tariq ;
Testani, Jeffrey M. ;
Desai, Nihar R. .
JACC-HEART FAILURE, 2016, 4 (09) :722-725
[2]   Clinical Implications of Chronic Heart Failure Phenotypes Defined by Cluster Analysis [J].
Ahmad, Tariq ;
Pencina, Michael J. ;
Schulte, Phillip J. ;
O'Brien, Emily ;
Whellan, David J. ;
Pina, Ileana L. ;
Kitzman, Dalane W. ;
Lee, Kerry L. ;
O'Connor, Christopher M. ;
Felker, G. Michael .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2014, 64 (17) :1765-1774
[3]   Use of Risk Models to Predict Death in the Next Year Among Individual Ambulatory Patients With Heart Failure [J].
Allen, Larry A. ;
Matlock, Daniel D. ;
Shetterly, Susan M. ;
Xu, Stanley ;
Levy, Wayne C. ;
Portalupi, Laura B. ;
McIlvennan, Colleen K. ;
Gurwitz, Jerry H. ;
Johnson, Eric S. ;
Smith, David H. ;
Magid, David J. .
JAMA CARDIOLOGY, 2017, 2 (04) :435-441
[4]   Executive Summary: Decision Making in Advanced Heart Failure A Scientific Statement From the American Heart Association [J].
Allen, Larry A. ;
Stevenson, Lynne W. ;
Grady, Kathleen L. ;
Goldstein, Nathan E. ;
Matlock, Daniel D. ;
Arnold, Robert M. ;
Cook, Nancy R. ;
Felker, G. Michael ;
Francis, Gary S. ;
Hauptman, Paul J. ;
Havranek, Edward P. ;
Krumholz, Harlan M. ;
Mancini, Donna ;
Riegel, Barbara ;
Spertus, John A. .
CIRCULATION, 2012, 125 (15) :1-2
[5]   Long-term Outcomes Associated With Implantable Cardioverter Defibrillator in Adults With Chronic Kidney Disease [J].
Bansal, Nisha ;
Szpiro, Adam ;
Reynolds, Kristi ;
Smith, David H. ;
Magid, David J. ;
Gurwitz, Jerry H. ;
Masoudi, Frederick ;
Greenlee, Robert T. ;
Tabada, Grace H. ;
Sung, Sue Hee ;
Dighe, Ashveena ;
Go, Alan S. .
JAMA INTERNAL MEDICINE, 2018, 178 (03) :390-398
[6]   The war against heart failure: the Lancet lecture [J].
Braunwald, Eugene .
LANCET, 2015, 385 (9970) :812-824
[7]   Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes [J].
Chen, Rui ;
Mias, George I. ;
Li-Pook-Than, Jennifer ;
Jiang, Lihua ;
Lam, Hugo Y. K. ;
Chen, Rong ;
Miriami, Elana ;
Karczewski, Konrad J. ;
Hariharan, Manoj ;
Dewey, Frederick E. ;
Cheng, Yong ;
Clark, Michael J. ;
Im, Hogune ;
Habegger, Lukas ;
Balasubramanian, Suganthi ;
O'Huallachain, Maeve ;
Dudley, Joel T. ;
Hillenmeyer, Sara ;
Haraksingh, Rajini ;
Sharon, Donald ;
Euskirchen, Ghia ;
Lacroute, Phil ;
Bettinger, Keith ;
Boyle, Alan P. ;
Kasowski, Maya ;
Grubert, Fabian ;
Seki, Scott ;
Garcia, Marco ;
Whirl-Carrillo, Michelle ;
Gallardo, Mercedes ;
Blasco, Maria A. ;
Greenberg, Peter L. ;
Snyder, Phyllis ;
Klein, Teri E. ;
Altman, Russ B. ;
Butte, Atul J. ;
Ashley, Euan A. ;
Gerstein, Mark ;
Nadeau, Kari C. ;
Tang, Hua ;
Snyder, Michael .
CELL, 2012, 148 (06) :1293-1307
[8]   Machine Learning and the Profession of Medicine [J].
Darcy, Alison M. ;
Louie, Alan K. ;
Roberts, Laura Weiss .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 315 (06) :551-552
[9]   Clinical Trials of Pharmacological Therapies in Acute Heart Failure Syndromes Lessons Learned and Directions Forward [J].
Felker, G. Michael ;
Pang, Peter S. ;
Adams, Kirkwood F. ;
Cleland, John G. F. ;
Cotter, Gad ;
Dickstein, Kenneth ;
Filippatos, Gerasimos S. ;
Fonarow, Gregg C. ;
Greenberg, Barry H. ;
Hernandez, Adrian F. ;
Khan, Sadiya ;
Komajda, Michel ;
Konstam, Marvin A. ;
Liu, Peter P. ;
Maggioni, Aldo P. ;
Massie, Barry M. ;
McMurray, John J. ;
Mehra, Mandeep ;
Metra, Marco ;
O'Connell, John ;
O'Connor, Christopher M. ;
Pina, Ileana L. ;
Ponikowski, Piotr ;
Sabbah, Hani N. ;
Teerlink, John R. ;
Udelson, James E. ;
Yancy, Clyde W. ;
Zannad, Faiez ;
Gheorghiade, Mihai .
CIRCULATION-HEART FAILURE, 2010, 3 (02) :314-325
[10]   Effects of empagliflozin on risk for cardiovascular death and heart failure hospitalization across the spectrumof heart failure risk in the EMPA-REG OUTCOME® trial [J].
Fitchett, David ;
Butler, Javed ;
van de Borne, Philippe ;
Zinman, Bernard ;
Lachin, John M. ;
Wanner, Christoph ;
Woerle, Hans J. ;
Hantel, Stefan ;
George, Jyothis T. ;
Johansen, Odd Erik ;
Inzucchi, Silvio E. ;
Aizenberg, D. ;
Ulla, M. ;
Waitman, J. ;
De Loredo, L. ;
Farias, J. ;
Fideleff, H. ;
Lagrutta, M. ;
Maldonado, N. ;
Colombo, H. ;
Ferre Pacora, F. ;
Wasserman, A. ;
Maffei, L. ;
Lehman, R. ;
Selvanayagam, J. ;
d'Emden, M. ;
Fasching, P. ;
Paulweber, B. ;
Toplak, H. ;
Luger, A. ;
Drexel, H. ;
Prager, R. ;
Schnack, C. ;
Schernthaner, G. ;
Fliesser-Goerzer, E. ;
Kaser, S. ;
Scheen, A. ;
Van Gaal, L. ;
Hollanders, G. ;
Kockaerts, Y. ;
Capiau, L. ;
Chachati, A. ;
Persu, A. ;
Hermans, M. ;
Vantroyen, D. ;
Vercammen, C. ;
Van de Borne, P. ;
Mathieu, C. ;
Benhalima, K. ;
Lienart, F. .
EUROPEAN HEART JOURNAL, 2018, 39 (05) :363-370