Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space

被引:95
作者
Blue, Pieter
Sterbenz, Jacob
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[3] MSRI, Berkeley, CA USA
[4] Princeton Univ, Princeton, NJ 08544 USA
关键词
Black Hole; Wave Equation; Scalar Field; Minkowski Space; Decay Estimate;
D O I
10.1007/s00220-006-0101-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide a uniform decay estimate for the local energy of general solutions to the inhomogeneous wave equation on a Schwarzschild background. Our estimate implies that such solutions have asymptotic behavior |phi| = O(r(-1)\t - | r *|\(-1/2)) as long as the source term is bounded in the norm (1- 2M/r)(-1).(1+ t +| r *|)L--1(1)(H-Omega(3)(r(2)dr* d omega)). In particular this gives scattering at small amplitudes for non-linear scalar fields of the form square(g)phi =lambda|phi|(p)phi for all 2 < p.
引用
收藏
页码:481 / 504
页数:24
相关论文
共 11 条
[1]   The wave equation on the Schwarzschild metric II. Local decay for the spin-2 Regge-Wheeler equation [J].
Blue, P ;
Soffer, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (01)
[2]  
BLUE P, UNPUB PHASE SPACE AN
[3]  
BLUE P, 2004, THESIS STATE U NEW J
[4]  
Blue P., 2003, Adv. Differential Equations, V8, P595
[5]   A proof of Price's law for the collapse of a self-gravitating scalar field [J].
Dafermos, M ;
Rodnianski, I .
INVENTIONES MATHEMATICAE, 2005, 162 (02) :381-457
[6]   Small-amplitude nonlinear waves on a black hole background [J].
Dafermos, M ;
Rodnianski, I .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (09) :1147-1172
[7]  
HAWKING SW, 1973, CAMBRIDGE MONOGRAPHS, V1
[8]  
LINDBLAD H, UNPUB GLOBAL STABILI
[9]  
Misner C., 1973, GRAVITATION
[10]   LIMITING AMPLITUDE PRINCIPLE [J].
MORAWETZ, CS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1962, 15 (03) :349-&