Pore-scale experimental investigation of oil recovery enhancement in oil-wet carbonates using carbonaceous nanofluids

被引:28
|
作者
Zhang, Bingjun [1 ]
Mohamed, Abdelhalim I. A. [1 ]
Goual, Lamia [1 ]
Piri, Mohammad [1 ]
机构
[1] Univ Wyoming, Ctr Innovat Flow Porous Media, Dept Petr Engn, Laramie, WY 82071 USA
基金
美国国家科学基金会;
关键词
AMPHIPHILIC JANUS NANOSHEETS; NANOPARTICLES; SURFACTANT; WETTABILITY; PERFORMANCE; SYSTEMS; FLUID; OXIDE; FLOW; NAPL;
D O I
10.1038/s41598-020-74450-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study investigates the pore-scale displacement mechanisms of crude oil in aged carbonate rocks using novel engineered carbon nanosheets (E-CNS) derived from sub-bituminous coal. The nanosheets, synthesized by a simple top-down technique, were stable in brine without any additional chemicals. Owing to their amphiphilic nature and nano-size, they exhibited dual properties of surfactants and nanoparticles and reduced the oil/brine interfacial tension (IFT) from 14.6 to 5.5 mN/m. X-ray micro-computed tomography coupled with miniature core-flooding was used to evaluate their ability to enhance oil recovery. Pore-scale displacement mechanisms were investigated using in-situ contact angle measurements, oil ganglia distribution analysis, and three-dimensional visualization of fluid occupancy maps in pores of different sizes. Analysis of these maps at the end of various flooding stages revealed that the nanofluid invaded into medium and small pores that were inaccessible to base brine. IFT reduction was identified as the main displacement mechanism responsible for oil recovery during 1 to 8 pore volumes (PVs) of nanofluid injection. Subsequently, wettability alteration was the dominant mechanism during the injection of 8 and 32 PVs, decreasing the average contact angle from 134 degrees (oil wet) to 85 degrees (neutral wet). In-situ saturation data reveals that flooding with only 0.1 wt% of E-CNS in brine resulted in incremental oil production of 20%, highlighting the significant potential of this nanofluid as a recovery agent.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Experimental Investigation of Wettability Alteration from Water-wet to Oil-wet During Oil Migration
    Gholinezhadateni, Mohammad
    Rostami, Behzad
    NATURAL RESOURCES RESEARCH, 2021, 30 (05) : 3735 - 3746
  • [22] Experimental investigation on plugging and transport characteristics of Pore-Scale microspheres in heterogeneous porous media for enhanced oil recovery
    Du, Dai-jun
    Pu, Wan-fen
    Jin, Fayang
    Hou, Dong-Dong
    Shi, Le
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2021, 42 (08) : 1152 - 1162
  • [23] Investigating the pore-scale mechanisms of microbial enhanced oil recovery
    Armstrong, Ryan T.
    Wildenschild, Dorthe
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2012, 94-95 : 155 - 164
  • [24] Pore-scale modeling: Effects of wettability on waterflood oil recovery
    Zhao, Xiucai
    Blunt, Martin J.
    Yao, Jun
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2010, 71 (3-4) : 169 - 178
  • [25] Residual Trapping of CO2 in an Oil-Filled, Oil-Wet Sandstone Core: Results of Three-Phase Pore-Scale Imaging
    Iglauer, Stefan
    Paluszny, Adriana
    Rahman, Taufiq
    Zhang, Yihuai
    Wulling, Wolfgang
    Lebedev, Maxim
    GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (20) : 11146 - 11154
  • [26] Experimental investigation of CO2 foam flooding-enhanced oil recovery in fractured low-permeability reservoirs: Core-scale to pore-scale
    Zhu, Di
    Li, Binfei
    Chen, Longkun
    Zhang, Chuanbao
    Zheng, Lei
    Chen, Weiqing
    Li, Zhaomin
    FUEL, 2024, 362
  • [27] Modeling Oil Recovery in Mixed-Wet Rocks: Pore-Scale Comparison Between Experiment and Simulation
    Akai, Takashi
    Alhammadi, Amer M.
    Blunt, Martin J.
    Bijeljic, Branko
    TRANSPORT IN POROUS MEDIA, 2019, 127 (02) : 393 - 414
  • [28] Modeling Oil Recovery in Mixed-Wet Rocks: Pore-Scale Comparison Between Experiment and Simulation
    Takashi Akai
    Amer M. Alhammadi
    Martin J. Blunt
    Branko Bijeljic
    Transport in Porous Media, 2019, 127 : 393 - 414
  • [29] Experimental Analysis and Numerical Modeling of Polymer Flooding in Heavy Oil Recovery Enhancement: A Pore-Level Investigation
    Khalilinezhad, Seyed Shahram
    Hashemi, Abdolnabi
    Mobaraki, Sina
    Zakavi, Mahdi
    Jarrahian, Khosro
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2019, 44 (12) : 10447 - 10465
  • [30] Pore-scale investigation of CO2/oil exsolution in CO2 huff-n-puff for enhanced oil recovery
    Huang, Feng
    Xu, Ruina
    Jiang, Peixue
    Wang, Chao
    Wang, Haitao
    Lun, Zengmin
    PHYSICS OF FLUIDS, 2020, 32 (09)