Programmable Phase Transitions in a Photonic Microgel System: Linking Soft Interactions to a Temporal pH Gradient

被引:17
作者
Go, Dennis [1 ]
Rommel, Dirk [1 ]
Chen, Lisa [1 ]
Shi, Feng [2 ,3 ]
Sprakel, Joris [4 ]
Kuehne, Alexander. J. C. [1 ]
机构
[1] Rhein Westfal TH Aachen, DWI Leibniz Inst Interact Mat, D-52074 Aachen, Germany
[2] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
[3] Beijing Univ Chem Technol, Beijing Lab Biomed Mat, Beijing 100029, Peoples R China
[4] Wageningen Univ & Res, Phys Chem & Soft Matter, NL-6708 WE Wageningen, Netherlands
关键词
COLLOIDAL CRYSTALS; ELECTRIC-FIELD; SUSPENSIONS; BEHAVIOR; SPHERES; MONODISPERSE; ASSEMBLIES; KINETICS; BANDGAPS; ARRAYS;
D O I
10.1021/acs.langmuir.6b04433
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Soft amphoteric microgel systems exhibit a rich phase behavior. Crystalline phases of these material systems are of interest because they exhibit photonic stop-gaps, giving rise to iridescent color. Such microgel systems are promising for applications in soft, switchable, and programmable photonic filters and devices. We here report a composite microgel system consisting of a hard and fluorescently labeled core and a soft, amphoteric microgel shell. At pH above the isoelectric point (IEP), these colloids easily crystallize into three-dimensional colloidal assemblies. By adding a cyclic lactone to the system, the temporal pH profile can be controlled, and the microgels can be programmed to melt, while they lose charge. When the microgels gain the opposite charge, they recrystallize into assemblies of even higher order. We provide a model system to study the dynamic phase behavior of soft particles and their switchable and programmable photonic effects.
引用
收藏
页码:2011 / 2016
页数:6
相关论文
共 38 条
[1]   Mechanics at the glass-to-gel transition of thermoresponsive microgel suspensions [J].
Appel, Jeroen ;
Folker, Bart ;
Sprakel, Joris .
SOFT MATTER, 2016, 12 (09) :2515-2522
[2]   Temperature Controlled Sequential Gelation in Composite Microgel Suspensions [J].
Appel, Jeroen ;
de Lange, Niek ;
van der Kooij, Hanne M. ;
van de Laar, Ties ;
ten Hove, Jan Bart ;
Kodger, Thomas E. ;
Sprakel, Joris .
PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2015, 32 (07) :764-770
[3]   Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy [J].
Auer, S ;
Frenkel, D .
NATURE, 2001, 413 (6857) :711-713
[4]   Characterization of the LCST behaviour of aqueous poly(N-isopropylacrylamide) solutions by thermal and cloud point techniques [J].
Boutris, C ;
Chatzi, EG ;
Kiparissides, C .
POLYMER, 1997, 38 (10) :2567-2570
[5]   Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter [J].
Burkert, Klaus ;
Neumann, Thomas ;
Wang, Jianjun ;
Jonas, Ulrich ;
Knoll, Wolfgang ;
Ottleben, Holger .
LANGMUIR, 2007, 23 (06) :3478-3484
[6]   Polymerized Microgel Colloidal Crystals: Photonic Hydrogels with Tunable Band Gaps and Fast Response Rates [J].
Chen, Mao ;
Zhou, Lin ;
Guan, Ying ;
Zhang, Yongjun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (38) :9961-9965
[7]   Controlled growth of hard-sphere colloidal crystals [J].
Cheng, ZD ;
Russell, WB ;
Chaikin, PM .
NATURE, 1999, 401 (6756) :893-895
[8]   Thermosensitive core-shell particles as model systems for studying the flow behavior of concentrated colloidal dispersions [J].
Crassous, J. J. ;
Siebenbuerger, M. ;
Ballauff, M. ;
Drechsler, M. ;
Henrich, O. ;
Fuchs, M. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (20)
[9]   Ceramic Photonic Glass for Broadband Omnidirectional Reflection [J].
Dyachenko, Pavel N. ;
do Rosario, Jefferson J. ;
Leib, Elisabeth W. ;
Petrov, Alexander Yu. ;
Kubrin, Roman ;
Schneider, Gerold A. ;
Weller, Horst ;
Vossmeyer, Tobias ;
Eich, Manfred .
ACS PHOTONICS, 2014, 1 (11) :1127-1133
[10]   Recent advances in polymer colloidal crystal lasers [J].
Furumi, Seiichi .
NANOSCALE, 2012, 4 (18) :5564-5571