DYNAMICAL INSTABILITY OF WHITE DWARFS AND BREAKING OF SPHERICAL SYMMETRY UNDER THE PRESENCE OF EXTREME MAGNETIC FIELDS

被引:40
作者
Coelho, J. G. [1 ,2 ,3 ,4 ]
Marinho, R. M. [3 ]
Malheiro, M. [3 ]
Negreiros, R. [5 ]
Caceres, D. L. [1 ,2 ,4 ]
Rueda, J. A. [1 ,2 ,4 ]
Ruffini, R. [1 ,2 ,4 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[2] Univ Roma La Sapienza, ICRA, I-00185 Rome, Italy
[3] ITA, Dept Fis, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[4] ICRANet, I-65122 Pescara, Italy
[5] Univ Fed Fluminense, Inst Fis, BR-24210346 Niteroi, RJ, Brazil
基金
巴西圣保罗研究基金会;
关键词
stars: magnetic field; white dwarfs; MASS-RADIUS RELATION; 1E 2259+586; DA; EXPLOSION; STARS; HOT;
D O I
10.1088/0004-637X/794/1/86
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Massive, highly magnetized white dwarfs with fields up to 10(9) G have been observed and theoretically used for the description of a variety of astrophysical phenomena. Ultramagnetized white dwarfs with uniform interior fields up to 10(18) G have been recently purported to obey a new maximum mass limit, M-max approximate to 2.58 M-circle dot, which largely overcomes the traditional Chandrasekhar value, M-Ch approximate to 1.44 M-circle dot. Such a larger limit would make these astrophysical objects viable candidates for the explanation of the superluminous population of Type Ia supernovae. We show that several macro and micro physical aspects such as gravitational, dynamical stability, breaking of spherical symmetry, general relativity, inverse beta decay, and pycnonuclear fusion reactions are of most relevance for the self-consistent description of the structure and assessment of stability of these objects. It is shown in this work that the first family of magnetized white dwarfs indeed satisfy all the criteria of stability, while the ultramagnetized white dwarfs are very unlikely to exist in nature since they violate minimal requests of stability. Therefore, the canonical Chandrasekhar mass limit of white dwarfs still has to be applied.
引用
收藏
页数:7
相关论文
共 54 条
[1]  
[Anonymous], 1965, Gravitation Theory and Gravitational Collapse
[2]   RE J0317-853 - THE HOTTEST KNOWN HIGHLY MAGNETIC DA WHITE-DWARF [J].
BARSTOW, MA ;
JORDAN, S ;
ODONOGHUE, D ;
BURLEIGH, MR ;
NAPIWOTZKI, R ;
HARROPALLIN, MK .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1995, 277 (03) :971-985
[3]   NEUTRON STAR MATTER [J].
BAYM, G ;
BETHE, HA ;
PETHICK, CJ .
NUCLEAR PHYSICS A, 1971, A175 (02) :225-&
[4]  
Bhattacharya D., 2014, ARXIV14052282
[5]   SGR 0418+5729, Swift J1822.3-1606, and 1E 2259+586 as massive, fast-rotating, highly magnetized white dwarfs [J].
Boshkayev, K. ;
Izzo, L. ;
Hernandez, J. A. Rueda ;
Ruffini, R. .
ASTRONOMY & ASTROPHYSICS, 2013, 555
[6]   ON GENERAL RELATIVISTIC UNIFORMLY ROTATING WHITE DWARFS [J].
Boshkayev, Kuantay ;
Rueda, Jorge A. ;
Ruffini, Remo ;
Siutsou, Ivan .
ASTROPHYSICAL JOURNAL, 2013, 762 (02)
[7]   Quantum magnetic collapse [J].
Chaichian, M ;
Masood, SS ;
Montonen, C ;
Martínez, AP ;
Rojas, HP .
PHYSICAL REVIEW LETTERS, 2000, 84 (23) :5261-5264
[8]   Stability of super-Chandrasekhar magnetic white dwarfs [J].
Chamel, N. ;
Fantina, A. F. ;
Davis, P. J. .
PHYSICAL REVIEW D, 2013, 88 (08)
[9]   Properties of the outer crust of strongly magnetized neutron stars from Hartree-Fock-Bogoliubov atomic mass models [J].
Chamel, N. ;
Pavlov, R. L. ;
Mihailov, L. M. ;
Velchev, Ch J. ;
Stoyanov, Zh K. ;
Mutafchieva, Y. D. ;
Ivanovich, M. D. ;
Pearson, J. M. ;
Goriely, S. .
PHYSICAL REVIEW C, 2012, 86 (05)
[10]   PROBLEMS OF GRAVITATIONAL STABILITY IN THE PRESENCE OF A MAGNETIC FIELD [J].
CHANDRASEKHAR, S ;
FERMI, E .
ASTROPHYSICAL JOURNAL, 1953, 118 (01) :116-141