Sentiment Analysis Using Machine Learning and Deep Learning on Covid 19 Vaccine Twitter Data with Hadoop MapReduce

被引:0
|
作者
Kul, Seda [1 ]
Sayar, Ahmet [1 ]
机构
[1] Kocaeli Univ, Baki Komsuoglu Bulvari 515, TR-41001 Kocaeli, Turkey
关键词
Coronavirus; Twitter; Sentiment analysis; Natural language processing; Big data; Distributed systems; Hadoop; MapReduce; Machine learning; Deep learning;
D O I
10.1007/978-3-030-94191-8_69
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Coronavirus, also known as COVID-19, initially surfaced in Wuhan, China, in December of 2019. The virus was one of the most widely discussed subjects on social media. As a result, these social media sources are exposed to and present a variety of viewpoints, beliefs, and feelings. Big data is a significant resource for computer scientists and scholars who want to understand how people feel about current events. We present a real-time implementation of a system that can identify Twitter opinions about the COVID-19 Vaccine using Hadoop in this work. All tweets are divided into three categories (Positive, Neutral, and Negative). Sentiment analysis was conducted by Logistic Regression, Random Forest, Deep Neural Network, and Convolutional Neural Network.
引用
收藏
页码:859 / 868
页数:10
相关论文
共 50 条
  • [21] Sentiment Analysis using Machine Learning and Deep Learning
    Chandra, Yogesh
    Jana, Antoreep
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM-2020), 2019, : 1 - 4
  • [22] Twitter Sentiment Analysis using Deep Learning Methods
    Ramadhani, Adyan Marendra
    Goo, Hong Soon
    2017 7TH INTERNATIONAL ANNUAL ENGINEERING SEMINAR (INAES), 2017, : 100 - 103
  • [23] Machine learning tool for exploring sentiment analysis on twitter data
    Biradar, Shanta H.
    Gorabal, J. V.
    Gupta, Gaurav
    MATERIALS TODAY-PROCEEDINGS, 2022, 56 : 1927 - 1934
  • [24] Machine Learning-Based Sentiment Analysis of Twitter Data
    Karthiga, M.
    Kumar, Sathish G.
    Aravindhraj, N.
    Priyanka, S.
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATION ENGINEERING (ICACCE-2019), 2019,
  • [25] Machine learning tool for exploring sentiment analysis on twitter data
    Biradar, Shanta H.
    Gorabal, J.V.
    Gupta, Gaurav
    Materials Today: Proceedings, 2022, 56 : 1927 - 1934
  • [26] A Study of Sentiment Analysis Using Deep Learning Techniques on Thai Twitter Data
    Vateekul, Peerapon
    Koomsubha, Thanabhat
    2016 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE), 2016, : 70 - 75
  • [27] COVID-19 Related Sentiment Analysis Using State-of-the-Art Machine Learning and Deep Learning Techniques
    Jalil, Zunera
    Abbasi, Ahmed
    Javed, Abdul Rehman
    Badruddin Khan, Muhammad
    Abul Hasanat, Mozaherul Hoque
    Malik, Khalid Mahmood
    Saudagar, Abdul Khader Jilani
    FRONTIERS IN PUBLIC HEALTH, 2022, 9
  • [28] Sentiment Analysis of Financial Textual data Using Machine Learning and Deep Learning Models
    Ahmad H.O.
    Umar S.U.
    Informatica (Slovenia), 2023, 47 (05): : 153 - 158
  • [29] Twitter Sentiment Analysis Using Machine Learning For Product Evaluation
    Yadav, Nikhil
    Kudale, Omkar
    Gupta, Srishti
    Rao, Aditi
    Shitole, Ajitkumar
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT-2020), 2020, : 181 - 185
  • [30] Sentiment Analysis of Twitter Posts using Machine Learning Algorithms
    Gupta, Ashutosh
    Singh, Anusha
    Pandita, Ishan
    Parashar, Harsh
    PROCEEDINGS OF THE 2019 6TH INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM), 2019, : 980 - 983