Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid

被引:75
作者
Abbasi, F. M. [1 ]
Mustafa, M. [2 ]
Shehzad, S. A. [3 ]
Alhuthali, M. S. [4 ]
Hayat, T. [4 ,5 ]
机构
[1] Comsats Inst Informat Technol, Dept Math, Islamabad 44000, Pakistan
[2] Natl Univ Sci & Technol, Sch Nat Sci, Islamabad 44000, Pakistan
[3] Comsats Inst Informat Technol, Dept Math, Sahiwal 57000, Pakistan
[4] King Abdulaziz Univ, Fac Sci, Dept Math, NAAM Res Grp, Jeddah 21589, Saudi Arabia
[5] Quaid I Azam Univ 45320, Dept Math, Islamabad 44000, Pakistan
关键词
Oldroyd-B fluid; Cattaneo-Christov heat flux; nonlinear analysis; NONLINEARLY STRETCHING SHEET; SATURATED POROUS LAYER; STAGNATION-POINT; MHD FLOW; NANOFLUID; INSTABILITY; STABILITY; EQUATIONS; STRESS; MEDIA;
D O I
10.1088/1674-1056/25/1/014701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the Cattaneo-Christov heat flux model for a two-dimensional laminar boundary layer flow of an incompressible Oldroyd-B fluid over a linearly stretching sheet. Mathematical formulation of the boundary layer problems is given. The nonlinear partial differential equations are converted into the ordinary differential equations using similarity transformations. The dimensionless velocity and temperature profiles are obtained through optimal homotopy analysis method (OHAM). The influences of the physical parameters on the velocity and the temperature are pointed out. The results show that the temperature and the thermal boundary layer thickness are smaller in the Cattaneo-Christov heat flux model than those in the Fourier's law of heat conduction.
引用
收藏
页数:6
相关论文
共 42 条
[1]   Numerical and analytical solutions for Falkner-Skan flow of MHD Oldroyd-B fluid [J].
Abbasbandy, S. ;
Hayat, T. ;
Alsaedi, A. ;
Rashidi, M. M. .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2014, 24 (02) :390-401
[2]   Determination of optimal convergence-control parameter value in homotopy analysis method [J].
Abbasbandy, S. ;
Jalili, M. .
NUMERICAL ALGORITHMS, 2013, 64 (04) :593-605
[3]   MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet [J].
Abel, M. Subhas ;
Tawade, Jagadish V. ;
Nandeppanavar, Mahantesh M. .
MECCANICA, 2012, 47 (02) :385-393
[4]   The closed form solutions for Cattaneo and stress equations due to step input pulse heating [J].
Al-Qahtani, H. ;
Yilbas, B. S. .
PHYSICA B-CONDENSED MATTER, 2010, 405 (18) :3869-3874
[5]  
Bissell J J, 2015, P A
[6]  
Cattaneo C., 1949, Atti Sem. Mat. Fis. Univ. Modena, V3, P83
[7]   On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction [J].
Christov, C. I. .
MECHANICS RESEARCH COMMUNICATIONS, 2009, 36 (04) :481-486
[8]   Uniqueness and structural stability for the Cattaneo-Christov equations [J].
Ciarletta, M. ;
Straughan, B. .
MECHANICS RESEARCH COMMUNICATIONS, 2010, 37 (05) :445-447
[9]  
Fourier J B J, 1822, THEORIE ANAL EE CHAL
[10]   Thermal instability in Brinkman porous media with Cattaneo-Christov heat flux [J].
Haddad, S. A. M. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 68 :659-668