Self-assembly of like-charged nanoparticles into microscopic crystals

被引:32
|
作者
Pillai, Pramod P. [1 ,2 ,3 ]
Kowalczyk, Bartlomiej [1 ,2 ,4 ]
Grzybowski, Bartosz A. [5 ,6 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Chem Engn, Evanston, IL 60208 USA
[3] Indian Inst Sci Educ & Res IISER Pune, Dept Chem, Pune 411008, Maharashtra, India
[4] 3M Purificat Inc, Meriden, CT USA
[5] Ulsan Natl Inst Sci & Technol, IBS Ctr Soft & Living Matter, Ulsan, South Korea
[6] Ulsan Natl Inst Sci & Technol, Dept Chem, Ulsan, South Korea
关键词
SUPERLATTICES; STABILITY; AU;
D O I
10.1039/c5nr06983a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Like-charged nanoparticles, NPs, can assemble in water into large, faceted crystals, each made of several million particles. These NPs are functionalized with mixed monolayers comprising ligands terminating in carboxylic acid group ligands as well as positively charged quaternary ammonium ligands. The latter groups give rise to electrostatic interparticle repulsions which partly offset the hydrogen bonding between the carboxylic acids. It is the balance between these two interactions that ultimately enables self-assembly. Depending on the pH, the particles can crystallize, form aggregates, remain unaggregated or even - in mixtures of two particle types - can "choose" whether to crystallize with like-charged or oppositely charged particles.
引用
收藏
页码:157 / 161
页数:5
相关论文
共 50 条
  • [1] Self-assembly of like-charged nanoparticles into Voronoi diagrams
    Zambo, Daniel
    Suzuno, Kohta
    Pothorszky, Szilard
    Bardfalvy, Dora
    Hollo, Gabor
    Nakanishi, Hideyuki
    Wang, Dawei
    Ueyama, Daishin
    Deak, Andras
    Lagzi, Istvan
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (36) : 25735 - 25740
  • [2] In Situ Visualization of Self-Assembly of Charged Gold Nanoparticles
    Liu, Yuzi
    Lin, Xiao-Min
    Sun, Yugang
    Rajh, Tijana
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (10) : 3764 - 3767
  • [3] In Situ Self-Assembly of Silver Nanoparticles
    Bokhonov, Boris B.
    Sharafutdinov, Marat R.
    Whitcomb, David R.
    Burleva, Lilia P.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (22) : 11980 - 11989
  • [4] Temperature driven assembly of like-charged nanoparticles at non-planar liquid-liquid or gel-air interfaces
    Zhuang, Qiang
    Walker, David A.
    Browne, Kevin P.
    Kowalczyk, Bartlomiej
    Beniah, Goliath
    Grzybowski, Bartosz A.
    NANOSCALE, 2014, 6 (09) : 4475 - 4479
  • [5] Protein-like Nanoparticles Based on Orthogonal Self-Assembly of Chimeric Peptides
    Jiang, Linhai
    Xu, Dawei
    Namitz, Kevin E.
    Cosgrove, Michael S.
    Lund, Reidar
    Dong, He
    SMALL, 2016, 12 (37) : 5126 - 5131
  • [6] Giant hollow fiber formation through self-assembly of oppositely charged polyelectrolyte brushes and gold nanoparticles
    Crassous, Jerome J.
    Millard, Pierre-Eric
    Mihut, Adriana M.
    Wittemann, Alexander
    Drechsler, Markus
    Ballauff, Matthias
    Schurtenberger, Peter
    SOFT MATTER, 2013, 9 (38) : 9111 - 9118
  • [7] Calcium Mediated Polyelectrolyte Adsorption on Like-Charged Surfaces
    Turesson, Martin
    Labbez, Christophe
    Nonat, Andre
    LANGMUIR, 2011, 27 (22) : 13572 - 13581
  • [8] Salt-Mediated Self-Assembly of Thioctic Acid on Gold Nanoparticles
    Volkert, Anna A.
    Subramaniam, Varuni
    Ivanov, Michael R.
    Goodman, Amanda M.
    Haes, Amanda J.
    ACS NANO, 2011, 5 (06) : 4570 - 4580
  • [9] Controlled Self-Assembly of Periodic and Aperiodic Cluster Crystals
    Barkan, Kobi
    Engel, Michael
    Lifshitz, Ron
    PHYSICAL REVIEW LETTERS, 2014, 113 (09)
  • [10] Binary superlattices of nanoparticles: Self-assembly leads to "metamaterials"
    Rogach, AL
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (02) : 148 - 149