Self-Powered pH Sensor Based on a Flexible Organic-Inorganic Hybrid Composite Nanogenerator

被引:114
作者
Saravanakumar, Balasubramaniam [1 ]
Soyoon, Shin [1 ]
Kim, Sang-Jae [2 ]
机构
[1] Jeju Natl Univ, Dept Mechatron Engn, Nanomat & Syst Lab, Cheju 690756, South Korea
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
新加坡国家研究基金会;
关键词
hybrid nanogenerator; pH sensor; PVDF; self-powered device; solution-casting; ZnO nanowire; NANOWIRE ARRAYS; FILM; NANOPARTICLES; PVDF;
D O I
10.1021/am5031648
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, we developed an innovative, flexible, organic-inorganic hybrid composite nanogenerator, which was used to drive a self-powered microwire-based pH sensor. The hybrid composite nanogenerator was fabricated using ZnO nanowire and piezoelectric polymer poly(vinylidene fluoride), through a simple, inexpensive solution-casting technique. The fabricated hybrid composite nanogenerator delivered a maximum open-circuit voltage of 6.9 V and a short-circuit current of 0.96 mu A, with an output power of 6.624 mu W under uniaxial compression. This high-performance, electric poling free composite nanogenerator opens up the possibility of industrial-scale fabrication. The hybrid nanogenerator demonstrated its ability to drive five green LEDs simultaneously, without using an energy-storage device. Additionally, we constructed a self-powered pH sensor, using a ZnO microwire powered with our hybrid nanogenerator. The output voltage varied according to changes in the pH level. This study demonstrates the feasibility of using a hybrid nanogenerator as a self-powered device that can be extended for use as a biosensor for environmental monitoring and/or as a smart, wearable, vibration sensor in future applications.
引用
收藏
页码:13716 / 13723
页数:8
相关论文
共 43 条
[1]   The pH Response and Sensing Mechanism of n-Type ZnO/Electrolyte Interfaces [J].
Al-Hilli, Safaa ;
Willander, Magnus .
SENSORS, 2009, 9 (09) :7445-7480
[2]   Graphene-P(VDF-TrFE) Multilayer Film for Flexible Applications [J].
Bae, Sang-Hoon ;
Kahya, Orhan ;
Sharma, Bhupendra K. ;
Kwon, Junggou ;
Cho, Hyoung J. ;
Ozyilmaz, Barbaros ;
Ahn, Jong-Hyun .
ACS NANO, 2013, 7 (04) :3130-3138
[3]   Energy harvesting vibration sources for microsystems applications [J].
Beeby, S. P. ;
Tudor, M. J. ;
White, N. M. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (12) :R175-R195
[4]   Nanoconfinement: an Effective Way to Enhance PVDF Piezoelectric Properties [J].
Cauda, Valentina ;
Stassi, Stefano ;
Bejtka, Katarzyna ;
Canayese, Giancarlo .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (13) :6430-6437
[5]   Porous PVDF As Effective Sonic Wave Driven Nanogenerators [J].
Cha, SeungNam ;
Kim, Seong Min ;
Kim, HyunJin ;
Ku, JiYeon ;
Sohn, Jung Inn ;
Park, Young Jun ;
Song, Byong Gwon ;
Jung, Myoung Hoon ;
Lee, Eun Kyung ;
Choi, Byoung Lyong ;
Park, Jong Jin ;
Wang, Zhong Lin ;
Kim, Jong Min ;
Kim, Kinam .
NANO LETTERS, 2011, 11 (12) :5142-5147
[6]   All-Solution-Processed Flexible Thin Film Piezoelectric Nanogenerator [J].
Chung, Sung Yun ;
Kim, Sunyoung ;
Lee, Ju-Hyuck ;
Kim, Kyongjun ;
Kim, Sang-Woo ;
Kang, Chong-Yun ;
Yoon, Seok-Jin ;
Kim, Youn Sang .
ADVANCED MATERIALS, 2012, 24 (45) :6022-+
[7]   Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J].
Cui, Y ;
Wei, QQ ;
Park, HK ;
Lieber, CM .
SCIENCE, 2001, 293 (5533) :1289-1292
[8]  
GREGORIO R, 1994, J POLYM SCI POL PHYS, V32, P859, DOI 10.1002/polb.1994.090320509
[9]   Flexible Fiber Nanogenerator with 209 V Output Voltage Directly Powers a Light-Emitting Diode [J].
Gu, Long ;
Cui, Nuanyang ;
Cheng, Li ;
Xu, Qi ;
Bai, Suo ;
Yuan, Miaomiao ;
Wu, Weiwei ;
Liu, Jinmei ;
Zhao, Yong ;
Ma, Fei ;
Qin, Yong ;
Wang, Zhong Lin .
NANO LETTERS, 2013, 13 (01) :91-94
[10]   Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy [J].
Hansen, Benjamin J. ;
Liu, Ying ;
Yang, Rusen ;
Wang, Zhong Lin .
ACS NANO, 2010, 4 (07) :3647-3652