Stability and evolution of electromagnetic solitons in relativistic degenerate laser plasmas

被引:5
作者
Roy, Sima [1 ]
Misra, A. P. [1 ]
机构
[1] Visva Bharati, Siksha Bhavana, Dept Math, Santini Ketan 731235, W Bengal, India
关键词
plasma nonlinear phenomena; plasma waves; astrophysical plasmas;
D O I
10.1017/S0022377820001452
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The dynamical behaviours of electromagnetic (EM) solitons formed due to nonlinear interaction of linearly polarized intense laser light and relativistic degenerate plasmas are studied. In the slow-motion approximation of relativistic dynamics, the evolution of weakly nonlinear EM envelope is described by the generalized nonlinear Schrodinger (GNLS) equation with local and nonlocal nonlinearities. Using the Vakhitov-Kolokolov criterion, the stability of an EM soliton solution of the GNLS equation is studied. Different stable and unstable regions are demonstrated with the effects of soliton velocity, soliton eigenfrequency, as well as the degeneracy parameter R = p(Fe)/m(e)c, where p(Fe) is the Fermi momentum and me the electron mass and c is the speed of light in vacuum. It is found that the stability region shifts to an unstable one and is significantly reduced as one enters from the regimes of weakly relativistic (R << 1) to ultrarelativistic (R >> 1) degeneracy of electrons. The analytically predicted results are in good agreement with the simulation results of the GNLS equation. It is shown that the standing EM soliton solutions are stable. However, the moving solitons can be stable or unstable depending on the values of soliton velocity, the eigenfrequency or the degeneracy parameter. The latter with strong degeneracy (R > 1) can eventually lead to soliton collapse.
引用
收藏
页数:15
相关论文
共 20 条
  • [1] Electromagnetic solitons in degenerate relativistic electron-positron plasma
    Berezhiani, V. I.
    Shatashvili, N. L.
    Tsintsadze, N. L.
    [J]. PHYSICA SCRIPTA, 2015, 90 (06)
  • [2] Model of compact 3D electromagnetic solitons
    Bersons, Imants
    Veilande, Rita
    Balcers, Ojars
    [J]. PHYSICA SCRIPTA, 2020, 95 (02)
  • [3] Chandrasekhar S, 1934, MON NOT R ASTRON SOC, V95, P0207
  • [4] Vortex-loop calculation of the specific heat of superfluid 4He under pressure
    Forrester, Andrew
    Williams, Gary A.
    [J]. PHYSICAL REVIEW E, 2019, 100 (06)
  • [5] Self-modulation of a strong electromagnetic wave in a positron-electron plasma induced by relativistic temperatures and phonon damping
    Gratton, FT
    Gnavi, G
    Galvao, RMO
    Gomberoff, L
    [J]. PHYSICAL REVIEW E, 1997, 55 (03) : 3381 - 3392
  • [6] Stability of one-dimensional electromagnetic solitons in relativistic laser plasmas
    Hadzievski, L
    Jovanovic, MS
    Skoric, MM
    Mima, K
    [J]. PHYSICS OF PLASMAS, 2002, 9 (06) : 2569 - 2574
  • [7] Plasma stopping-power measurements reveal transition from non-degenerate to degenerate plasmas
    Hayes, A. C.
    Gooden, M. E.
    Henry, E.
    Jungman, Gerard
    Wilhelmy, J. B.
    Rundberg, R. S.
    Yeamans, C.
    Kyrala, G.
    Cerjan, C.
    Danielson, D. L.
    Daligault, Jerome
    Wilburn, C.
    Volegov, P.
    Wilde, C.
    Batha, S.
    Bredeweg, T.
    Kline, J. L.
    Grim, G. P.
    Hartouni, E. P.
    Shaughnessy, D.
    Velsko, C.
    Cassata, W. S.
    Moody, K.
    Hopkins, L. F.
    Hinkel, D.
    Doppner, T.
    Le Pape, S.
    Graziani, F.
    Callahan, D. A.
    Hurricane, O. A.
    Schneider, D.
    [J]. NATURE PHYSICS, 2020, 16 (04) : 432 - +
  • [8] Transition from wakefield generation to soliton formation
    Holkundkar, Amol R.
    Brodin, Gert
    [J]. PHYSICAL REVIEW E, 2018, 97 (04)
  • [9] Jeong T. M., 2016, GENERATION HIGH INTE, DOI [10.5772/64526, DOI 10.5772/64526]
  • [10] Stability and evolution of one-dimensional relativistic solitons on the ion time scale
    Lehmann, G.
    Laedke, E. W.
    Spatschek, K. H.
    [J]. PHYSICS OF PLASMAS, 2006, 13 (09)