The sets of Dirichlet non-improvable numbers versus well-approximable numbers

被引:21
作者
Bakhtawar, Ayreena [1 ]
Bos, Philip [1 ]
Hussain, Mumtaz [1 ]
机构
[1] La Trobe Univ, Dept Math & Stat, POB 199, Bendigo 3552, Australia
关键词
uniform Diophantine approximation; Dirichlet's theorem; Jarnik theorem; Hausdorff dimension; HAUSDORFF DIMENSION;
D O I
10.1017/etds.2019.41
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Psi :[1, infinity) -> R+ be a non-decreasing function, a(n) (x) the nth partial quotient of x and q(n) (x) the denominator of the nth convergent. The set of psi-Dirichlet non-improvable numbers, G(Psi): = {x is an element of [0, 1) : a(n)(x)a(n+1) (x) > Psi(q(n)(x)) > Psi(q(n)(x)) for infinitely many n is an element of N], is related with the classical set of 1=q(2) Psi(q)-approximable numbers K(Psi) in the sense that K (3 Psi) subset of G(Psi) Both of these sets enjoy the same s-dimensional Hausdorff measure criterion for s is an element of (0, 1). We prove that the set G(Psi) \ K (3 Psi) is uncountable by proving that its Hausdorff dimension is the same as that for the sets K (Psi) and G (Psi). This gives an affirmative answer to a question raised by Hussain et al [Hausdorff measure of sets of Dirichlet non-improvable numbers. Mathematika 64(2) (2018), 502-518].
引用
收藏
页码:3217 / 3235
页数:19
相关论文
共 21 条
  • [1] [Anonymous], 2014, FRACTAL GEOMETRY
  • [2] Beresnevich V, 2006, MEM AM MATH SOC, V179, P1
  • [3] Bugeaud Y, 2016, LOND MATH S, P96
  • [4] Cassels J.W.S., 1957, CAMBR TRACTS MATH MA, V45
  • [5] Davenport H., 1970, S MATH, VIV, P113
  • [6] Divis B., 1972, J NUMBER THEORY, V4, P274
  • [7] Divis B., 1971, COMMENT MATH U CAROL, V12, P127
  • [8] DODSON MM, 1992, J REINE ANGEW MATH, V432, P69
  • [9] DODSON MM, 1991, J LOND MATH SOC, V44, P1
  • [10] HAAS A, 2008, NEW YORK J MATH, V14, P139