Salient Object Detection for Point Clouds

被引:11
作者
Fan, Songlin [1 ,2 ]
Gao, Wei [1 ,2 ]
Li, Ge [1 ]
机构
[1] Peking Univ, Shenzhen Grad Sch, Shenzhen, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
来源
COMPUTER VISION - ECCV 2022, PT XXVIII | 2022年 / 13688卷
基金
国家重点研发计划;
关键词
Salient object detection; Point cloud; Dataset; Baseline; SEGMENTATION; DENSE;
D O I
10.1007/978-3-031-19815-1_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper researches the unexplored task-point cloud salient object detection (SOD). Differing from SOD for images, we find the attention shift of point clouds may provoke saliency conflict, i.e., an object paradoxically belongs to salient and non-salient categories. To eschew this issue, we present a novel view-dependent perspective of salient objects, reasonably reflecting the most eye-catching objects in point cloud scenarios. Following this formulation, we introduce PCSOD, the first dataset proposed for point cloud SOD consisting of 2,872 in-/out-door 3D views. The samples in our dataset are labeled with hierarchical annotations, e.g., super-/sub-class, bounding box, and segmentation map, which endows the brilliant generalizability and broad applicability of our dataset verifying various conjectures. To evidence the feasibility of our solution, we further contribute a baseline model and benchmark five representative models for a comprehensive comparison. The proposed model can effectively analyze irregular and unordered points for detecting salient objects. Thanks to incorporating the task-tailored designs, our method shows visible superiority over other baselines, producing more satisfactory results. Extensive experiments and discussions reveal the promising potential of this research field, paving the way for further study.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
[41]   Weakly Supervised Salient Object Detection by Hierarchically Enhanced Scribbles [J].
Wang, Xiongying ;
Al-Huda, Zaid ;
Peng, Bo ;
Tang, Xin .
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (02)
[42]   PSNet: Parallel Symmetric Network for Video Salient Object Detection [J].
Cong, Runmin ;
Song, Weiyu ;
Lei, Jianjun ;
Yue, Guanghui ;
Zhao, Yao ;
Kwong, Sam .
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (02) :402-414
[43]   Salient Object Detection by Optimizing Robust Background Detection [J].
Wang, Xianheng ;
Liu, Zhaobin .
2018 IEEE 18TH INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY (ICCT), 2018, :1164-1168
[44]   A unified framework for exploiting color coefficients for salient object detection [J].
Naqvi, Syed S. ;
Mirza, J. ;
Bashir, Tariq .
NEUROCOMPUTING, 2018, 312 :187-200
[45]   HOW THE DISTRIBUTION OF SALIENT OBJECTS IN IMAGES INFLUENCES SALIENT OBJECT DETECTION [J].
Schauerte, B. ;
Stiefelhagen, R. .
2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, :74-78
[46]   Salient Object Detection: Integrate Salient Features in the Deep Learning Framework [J].
Chen, Qixin ;
Liu, Tie ;
Shang, Yuanyuan ;
Shao, Zhuhong ;
Ding, Hui .
IEEE ACCESS, 2019, 7 :152483-152492
[47]   Key Object Detection: Unifying Salient and Camouflaged Object Detection Into One Task [J].
Yin, Pengyu ;
Fu, Keren ;
Zhao, Qijun .
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XII, 2025, 15042 :536-550
[48]   SOA: Seed point offset attention for indoor 3D object detection in point clouds [J].
Shu, Jun ;
Yu, Shiqi ;
Shu, Xinyi ;
Hu, Jiewen .
COMPUTERS & GRAPHICS-UK, 2024, 123
[49]   Learning discriminative context for salient object detection [J].
Zhu, Ge ;
Wang, Lei ;
Tang, Jinping .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 131
[50]   Salient object detection: From pixels to segments [J].
Yanulevskaya, Victoria ;
Uijlings, Jasper ;
Geusebroek, Jan-Mark .
IMAGE AND VISION COMPUTING, 2013, 31 (01) :31-42