Salient Object Detection for Point Clouds

被引:11
作者
Fan, Songlin [1 ,2 ]
Gao, Wei [1 ,2 ]
Li, Ge [1 ]
机构
[1] Peking Univ, Shenzhen Grad Sch, Shenzhen, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
来源
COMPUTER VISION - ECCV 2022, PT XXVIII | 2022年 / 13688卷
基金
国家重点研发计划;
关键词
Salient object detection; Point cloud; Dataset; Baseline; SEGMENTATION; DENSE;
D O I
10.1007/978-3-031-19815-1_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper researches the unexplored task-point cloud salient object detection (SOD). Differing from SOD for images, we find the attention shift of point clouds may provoke saliency conflict, i.e., an object paradoxically belongs to salient and non-salient categories. To eschew this issue, we present a novel view-dependent perspective of salient objects, reasonably reflecting the most eye-catching objects in point cloud scenarios. Following this formulation, we introduce PCSOD, the first dataset proposed for point cloud SOD consisting of 2,872 in-/out-door 3D views. The samples in our dataset are labeled with hierarchical annotations, e.g., super-/sub-class, bounding box, and segmentation map, which endows the brilliant generalizability and broad applicability of our dataset verifying various conjectures. To evidence the feasibility of our solution, we further contribute a baseline model and benchmark five representative models for a comprehensive comparison. The proposed model can effectively analyze irregular and unordered points for detecting salient objects. Thanks to incorporating the task-tailored designs, our method shows visible superiority over other baselines, producing more satisfactory results. Extensive experiments and discussions reveal the promising potential of this research field, paving the way for further study.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
[21]   Salient Object Detection by Fusing Local and Global Contexts [J].
Ren, Qinghua ;
Lu, Shijian ;
Zhang, Jinxia ;
Hu, Renjie .
IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 :1442-1453
[22]   Salient Object Detection With Spatiotemporal Background Priors for Video [J].
Xi, Tao ;
Zhao, Wei ;
Wang, Han ;
Lin, Weisi .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (07) :3425-3436
[23]   Automatic scene understanding and object identification in point clouds [J].
Bae, Egil .
ELECTRO-OPTICAL REMOTE SENSING XIII, 2019, 11160
[24]   Salient Objects in Clutter: Bringing Salient Object Detection to the Foreground [J].
Fan, Deng-Ping ;
Cheng, Ming-Ming ;
Liu, Jiang-Jiang ;
Gao, Shang-Hua ;
Hou, Qibin ;
Borji, Ali .
COMPUTER VISION - ECCV 2018, PT 15, 2018, 11219 :196-212
[25]   Salient Object Detection With Importance Degree [J].
Umeki, Yo ;
Funahashi, Isana ;
Yoshida, Taichi ;
Iwahashi, Masahiro .
IEEE ACCESS, 2020, 8 :147059-147069
[26]   Salient object detection based on regions [J].
Zhuojia Liang ;
Mingjia Wang ;
Xiaocong Zhou ;
Liang Lin ;
Wenjun Li .
Multimedia Tools and Applications, 2014, 68 :517-544
[27]   SALIENT OBJECT DETECTION WITH BOUNDARY INFORMATION [J].
Chen, Kai ;
Wang, Yongxiong ;
Hu, Chuanfei ;
Shao, Hang .
2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
[28]   Salient Object Detection with Edge Recalibration [J].
Tan, Zhenshan ;
Hua, Yikai ;
Gu, Xiaodong .
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I, 2020, 12396 :724-735
[29]   Reverse Attention for Salient Object Detection [J].
Chen, Shuhan ;
Tan, Xiuli ;
Wang, Ben ;
Hu, Xuelong .
COMPUTER VISION - ECCV 2018, PT IX, 2018, 11213 :236-252
[30]   Thresholding in salient object detection: a survey [J].
Kumar, Nitin .
MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (15) :19139-19170