Proper intrinsic scales for a-posteriori multiscale error estimation

被引:21
|
作者
Hauke, Guillermo [1 ]
Doweidar, Mohamed H.
Miana, Mario
机构
[1] Ctr Politecn Super, Dept Mecan Fluidos, C Maria de Luna 3, Zaragoza 50018, Spain
[2] Inst Tecnol Aragon, Area Mecan & Nuevos Mat, Zaragoza 50018, Spain
关键词
a-posteriori error estimation; advection-diffusion-reaction equation; fluid mechanics; stabilized methods; variational multiscale method;
D O I
10.1016/j.cma.2005.07.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently the multiscale a-posteriori error estimator has been introduced, showing excellent robustness for fluid mechanics problems. In this paper, a theoretical analysis for element edge exact solutions is conducted, in which case, the error constant is the norm of a Green's function or a residual-free bubble. This finds application when the solution is computed with a stabilized method. One of the features of the technique is that it gives the proper scales for a-posteriori error estimation in any norm of interest, such as the L-2, H-1, energy and L-infinity norms. For fluid transport problems it is shown that the constant for predicting the error in the H-1 seminorm is unbounded as the element Peclet number tends to infinity, making L-p norms more suitable for this type of problems. Furthermore, it is shown that the flow intrinsic time scale parameter represents the L-1 norm of the error as a function of the L-infinity norm of the residual. When these scales are employed for one-dimensional nodally-exact solutions, piecewise linear finite element spaces and piecewise constant residuals, the multiscale error estimator is shown to be exact. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:3983 / 4001
页数:19
相关论文
共 50 条
  • [1] Intrinsic scales and a posteriori multiscale error estimation for piecewise-linear functions and residuals
    Hauke, Guillermo
    Doweidar, Mohamed H.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2006, 20 (3-4) : 211 - 222
  • [2] Variational multiscale a-posteriori error estimation for multi-dimensional transport problems
    Hauke, Guillermo
    Fuster, Daniel
    Doweidar, Mohamed H.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (33-40) : 2701 - 2718
  • [3] Application of Variational a-Posteriori Multiscale Error Estimation to Higher-Order Elements
    Guillermo Hauke
    Mohamed H. Doweidar
    Daniel Fuster
    Antonio Gómez
    Javier Sayas
    Computational Mechanics, 2006, 38 : 382 - 389
  • [4] Application of variational a-posteriori multiscale error estimation to higher-order elements
    Hauke, Guillermo
    Doweidar, Mohamed H.
    Fuster, Daniel
    Gomez, Antonio
    Sayas, Javier
    COMPUTATIONAL MECHANICS, 2006, 38 (4-5) : 382 - 389
  • [5] A-POSTERIORI ERROR ESTIMATION IN SENSITIVITY ANALYSIS
    BUSCAGLIA, GC
    FEIJOO, RA
    PADRA, C
    STRUCTURAL OPTIMIZATION, 1995, 9 (3-4): : 194 - 199
  • [6] A-posteriori error estimation in axisymmetric geotechnical analyses
    El-Hamalawi, A
    Bolton, MD
    COMPUTERS AND GEOTECHNICS, 2002, 29 (08) : 587 - 607
  • [7] A-posteriori error estimation for second order mechanical systems
    Ruiner, Thomas
    Fehr, Joerg
    Haasdonk, Bernard
    Eberhard, Peter
    ACTA MECHANICA SINICA, 2012, 28 (03) : 854 - 862
  • [8] A-posteriori error estimation for second order mechanical systems
    Thomas Ruiner
    Jörg Fehr
    Bernard Haasdonk
    Peter Eberhard
    Acta Mechanica Sinica, 2012, 28 : 854 - 862
  • [9] A simple a-posteriori error estimation for adaptive BEM in elasticity
    Chen, HB
    Yu, DH
    Schnack, E
    COMPUTATIONAL MECHANICS, 2003, 30 (5-6) : 343 - 354
  • [10] A-posteriori error estimation for second order mechanical systems
    Thomas Ruiner
    Jrg Fehr
    Bernard Haasdonk
    Peter Eberhard
    Acta Mechanica Sinica, 2012, 28 (03) : 854 - 862