On the construction of minimum information bivariate copula families

被引:15
作者
Bedford, Tim [1 ]
Wilson, Kevin J. [1 ]
机构
[1] Univ Strathclyde, Dept Management Sci, Glasgow G1 1QE, Lanark, Scotland
关键词
Bivariate copulas; Information; Uncertainty modelling; Expert judgement;
D O I
10.1007/s10463-013-0422-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Copulas have become very popular as modelling tools in probability applications. Given a finite number of expectation constraints for functions defined on the unit square, the minimum information copula is that copula which has minimum information (Kullback-Leibler divergence) from the uniform copula. This can be considered the most "independent" copula satisfying the constraints. We demonstrate the existence and uniqueness of such copulas, rigorously establish the relation with discrete approximations, and prove an unexpected relationship between constraint expectation values and the copula density formula.
引用
收藏
页码:703 / 723
页数:21
相关论文
共 21 条
[1]  
[Anonymous], 2006, UNCERTAINTY ANAL HIG, DOI DOI 10.1002/0470863072
[2]  
[Anonymous], 2011, DEPEND MODEL
[3]  
[Anonymous], 1997, MULTIVARIATE MODELS
[4]  
[Anonymous], 2006, An introduction to copulas
[5]  
[Anonymous], 2003, Probability Theory
[6]  
Bedford T, 2002, ANN STAT, V30, P1031
[7]  
Bedford T., 2012, P PSAM 11 ESREL 2012
[8]  
Bedford T., 2013, EUROPEAN J OPE UNPUB
[9]  
Bedford T., 2002, P MATH METH REL
[10]   ENTROPY MINIMIZATION, DAD PROBLEMS, AND DOUBLY STOCHASTIC KERNELS [J].
BORWEIN, JM ;
LEWIS, AS ;
NUSSBAUM, RD .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 123 (02) :264-307