Extending precolorings to circular colorings

被引:8
作者
Albertson, Michael O. [1 ]
West, Douglas B.
机构
[1] Smith Coll, Northampton, MA 01063 USA
[2] Univ Illinois, Urbana, IL 61801 USA
关键词
graph coloring; circular chromatic number; precoloring extension; distance;
D O I
10.1016/j.jctb.2005.09.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fix positive integers k', d', k, d such that k'/d'>k/d >= 2. If P is a set of vertices in a (k, d)-colorable graph G, and any two vertices of P are separated by distance at least 2 [kk'/(2(k'd-kd'))], then every coloring of P with colors in Z(k') extends to a (k',d')-coloring of G. If k'd-kd'=1 and [k'/d']=[k/d], then this distance threshold is nearly sharp. The proof of this includes showing that up to symmetry, in this case there is only one (k', d')-coloring of the canonical (k, d)-colorable graph G(k,d). (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:472 / 481
页数:10
相关论文
共 15 条
[1]  
Albertson MO, 2002, ELECTRON J COMB, V9
[2]   Precoloring extensions of Brooks' Theorem [J].
Albertson, MO ;
Kostochka, AV ;
West, DB .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 18 (03) :542-553
[3]   Extending precolorings of subgraphs of locally planar graphs [J].
Albertson, MO ;
Hutchinson, JP .
EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (06) :863-871
[4]   Extending graph colorings [J].
Albertson, MO ;
Moore, EH .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 77 (01) :83-95
[5]   Extending graph colorings using no extra colors [J].
Albertson, MO ;
Moore, EH .
DISCRETE MATHEMATICS, 2001, 234 (1-3) :125-132
[6]   You can't paint yourself into a corner [J].
Albertson, MO .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 73 (02) :189-194
[7]  
Axenovich M, 2003, ELECTRON J COMB, V10
[8]   A NOTE ON THE STAR CHROMATIC NUMBER [J].
BONDY, JA ;
HELL, P .
JOURNAL OF GRAPH THEORY, 1990, 14 (04) :479-482
[9]  
Goddyn LA, 1998, J GRAPH THEOR, V28, P155, DOI 10.1002/(SICI)1097-0118(199807)28:3<155::AID-JGT5>3.0.CO
[10]  
2-J