Preparation of CQDs with hydroxyl function for Fe3+ detection

被引:14
作者
Dong, Limin [1 ,2 ]
Zhang, Wanqi [1 ]
Li, Xuejiao [1 ]
Geng, Xiaoyao [1 ]
机构
[1] Harbin Univ Sci & Technol, Heilongjiang Dept Educ, Coll Mat Sci & Engn, Harbin, Heilongjiang, Peoples R China
[2] Harbin Univ Sci & Technol, Key Lab Engn Dielect & Its Applicat, Minist Educ, Harbin, Heilongjiang, Peoples R China
关键词
carbon; fluorescence; quantum dots; radiation quenching; nanofabrication; nanostructured materials; microwave materials processing; C; ethanol; agglomeration; up-conversion fluorescence properties; fluorescence stability; Fe3+ detection; fluorescence intensity; fluorescence quenching; metal ion detection; hydrothermal method; solvothermal method; microwave method; carbon-quantum dots; hydroxyl function; GRAPHENE QUANTUM DOTS; FLUORESCENT CARBON NANOPARTICLES;
D O I
10.1049/mnl.2018.5369
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Owing to its excellent fluorescence stability, unique up-conversion fluorescence properties and biocompatibility, carbon-quantum dots (CQDs) have become a research hot spot in the field of carbon materials. This study used a series of different preparation strategies to synthesise CQDs such as microwave method, solvothermal method and hydrothermal method. The prepared quantum dots can be further applied to design and metal ion detection. It is worth noting that the CQDs prepared by the hydrothermal method are evenly distributed in the range of 2-3 nm without any agglomeration. Fluorescence quenching was performed by Fe3+, and the introduction of PO43- ion could increase the fluorescence intensity of CQDs-Fe3+ system. Furthermore, CQDs were hydroxyl functionalised by treating with ethanol. The functionalised CQDs synthesised by solvothermal method greatly enhanced the fluorescence intensity.
引用
收藏
页码:440 / 444
页数:5
相关论文
共 23 条
[1]   Luminescent Carbon Nanodots: Emergent Nanolights [J].
Baker, Sheila N. ;
Baker, Gary A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (38) :6726-6744
[2]   Surface functionalized carbogenic quantum dots [J].
Bourlinos, Athanasios B. ;
Stassinopoulos, Andreas ;
Anglos, Demetrios ;
Zboril, Radek ;
Karakassides, Michael ;
Giannelis, Emmanuel P. .
SMALL, 2008, 4 (04) :455-458
[3]   Synthesis of Strongly Fluorescent Graphene Quantum Dots by Cage-Opening Buckminsterfullerene [J].
Chua, Chun Kiang ;
Sofer, Zdenek ;
Simek, Petr ;
Jankovsky, Ondrej ;
Klimova, Katerina ;
Bakardjieva, Snejana ;
Kuckova, Stepanka Hrdlickova ;
Pumera, Martin .
ACS NANO, 2015, 9 (03) :2548-2555
[4]   Hydrothermal synthesis of nitrogen and boron doped carbon quantum dots with yellow-green emission for sensing Cr(VI), anti-counterfeiting and cell imaging [J].
Guo, Yongming ;
Chen, Yuzhi ;
Cao, Fengpu ;
Wang, Lijuan ;
Wang, Zhuo ;
Leng, Yumin .
RSC ADVANCES, 2017, 7 (76) :48386-48393
[5]   A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors [J].
Hardman, R .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2006, 114 (02) :165-172
[6]   A New Member of the Graphene Family: Graphene Acid [J].
Jankovsky, Ondrej ;
Novacek, Michal ;
Luxa, Jan ;
Sedmidubsky, David ;
Fila, Vlastimil ;
Pumera, Martin ;
Sofer, Zdenek .
CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (48) :17416-17424
[7]  
Larson DR, 2003, SCIENCE, V300, P1434, DOI 10.1126/science.1083780
[8]  
Li H., 2010, ANGEW CHEM INT EDIT, V122, P4532, DOI DOI 10.1002/ange.200906154
[9]   Photoluminescent Carbon Dots as Biocompatible Nanoprobes for Targeting Cancer Cells in Vitro [J].
Li, Qin ;
Ohulchanskyy, Tymish Y. ;
Liu, Ruili ;
Koynov, Kaloian ;
Wu, Dongqing ;
Best, Andreas ;
Kumar, Rajiv ;
Bonoiu, Adela ;
Prasad, Paras N. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (28) :12062-12068
[10]   Carbon quantum dots and their applications [J].
Lim, Shi Ying ;
Shen, Wei ;
Gao, Zhiqiang .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (01) :362-381