Spike solutions of a nonlinear Schrodinger equation with degenerate potential

被引:3
|
作者
Lorca, S
Montenegro, M
机构
[1] Univ Estadual Campinas, IMECC, Dept Matemat, BR-13083970 Campinas, SP, Brazil
[2] Univ Tarapaca, Dept Matemat, Arica, Chile
关键词
Schrodinger equation; degenerate potential; concentration;
D O I
10.1016/j.jmaa.2004.03.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of positive solutions to the elliptic equation epsilon(2) Deltau(x, y) - V(y)u(x, y) + f(u(x, y)) = 0 for (x, y) in an unbounded domain R-N1 x Omega(2) subject to the boundary condition u = 0 whenever partial derivativeOmega(2) is nonempty. Our potential V depends only on the y variable and Omega(2) is a bounded or unbounded domain which may coincide with R-N2. The positive parameter epsilon is tending to zero and our solutions u(epsilon) concentrate along minimum points of the unbounded manifold of critical points of V. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:276 / 286
页数:11
相关论文
共 50 条
  • [31] Quasi-periodic solutions with prescribed frequency in a nonlinear Schrodinger equation
    Ren Xiu-Fang
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (12) : 3067 - 3084
  • [32] The Soliton Solutions for the Nonlinear Schrodinger Equation with Self-consistent Source
    Reyimberganov, A. A.
    Rakhimov, I. D.
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2021, 36 : 84 - 94
  • [33] New types of exact solutions for nonlinear Schrodinger equation with cubic nonlinearity
    Ebaid, Abdelhalim
    Khaled, S. M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (08) : 1984 - 1992
  • [34] RADIAL AND NON-RADIAL SOLUTIONS FOR A NONLINEAR SCHRODINGER EQUATION WITH A CONSTRAINT
    Yang, Jiaxuan
    Li, Yongqing
    Wang, Zhi-Qiang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, : 225 - 237
  • [35] On the collapse of trial solutions for a damped-driven nonlinear Schrodinger equation
    Assing, Sigurd
    Hilbert, Astrid
    NONLINEARITY, 2018, 31 (11) : 4955 - 4978
  • [36] NONDEGENERACY OF NONRADIAL SIGN-CHANGING SOLUTIONS TO THE NONLINEAR SCHRODINGER EQUATION
    Ao, Weiwei
    Musso, Monica
    Wei, Juncheng
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2019, 147 (01): : 1 - 48
  • [37] EXISTENCE AND ORBITAL STABILITY OF PERIODIC WAVE SOLUTIONS FOR THE NONLINEAR SCHRoDINGER EQUATION
    Chen, Aiyong
    Wen, Shuangquan
    Huang, Wentao
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2012, 2 (02): : 137 - 148
  • [38] New bright and dark soliton solutions for a generalized nonlinear Schrodinger equation
    Kader, A. H. Abdel
    Latif, M. S. Abdel
    OPTIK, 2019, 176 : 699 - 703
  • [39] Multiplicity of sign-changing solutions for a supercritical nonlinear Schrodinger equation
    Nie, Jianjun
    Li, Quanqing
    APPLIED MATHEMATICS LETTERS, 2020, 109 (109)
  • [40] A critical Trudinger-Moser inequality involving a degenerate potential and nonlinear Schrodinger equations
    Chen, Lu
    Lu, Guozhen
    Zhu, Maochun
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (07) : 1391 - 1410