Predicting changes in hypertension control using electronic health records from a chronic disease management program

被引:49
作者
Sun, Jimeng [1 ]
McNaughton, Candace D. [2 ]
Zhang, Ping [1 ]
Perer, Adam [1 ]
Gkoulalas-Divanis, Aris [3 ]
Denny, Joshua C. [4 ,5 ]
Kirby, Jacqueline [6 ]
Lasko, Thomas [4 ]
Saip, Alexander [6 ]
Malin, Bradley A. [4 ,7 ]
机构
[1] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Vanderbilt Univ, Sch Med, Dept Emergency Med, Nashville, TN 37212 USA
[3] IBM Res Ireland, Dublin, Ireland
[4] Vanderbilt Univ, Sch Med, Dept Biomed Informat, Nashville, TN 37212 USA
[5] Vanderbilt Univ, Sch Med, Dept Med, Nashville, TN 37212 USA
[6] Vanderbilt Univ, Vanderbilt Inst Clin & Translat Res, Nashville, TN 37235 USA
[7] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA
关键词
hypertension control; predictive modeling; visualization; BLOOD-PRESSURE CONTROL; CLINICAL INERTIA; HEART-DISEASE; RISK; PREVENTION; HYDROCHLOROTHIAZIDE; CHLORTHALIDONE; EPIDEMIOLOGY; INDIVIDUALS; RESPONSES;
D O I
10.1136/amiajnl-2013-002033
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objective Common chronic diseases such as hypertension are costly and difficult to manage. Our ultimate goal is to use data from electronic health records to predict the risk and timing of deterioration in hypertension control. Towards this goal, this work predicts the transition points at which hypertension is brought into, as well as pushed out of, control. Method In a cohort of 1294 patients with hypertension enrolled in a chronic disease management program at the Vanderbilt University Medical Center, patients are modeled as an array of features derived from the clinical domain over time, which are distilled into a core set using an information gain criteria regarding their predictive performance. A model for transition point prediction was then computed using a random forest classifier. Results The most predictive features for transitions in hypertension control status included hypertension assessment patterns, comorbid diagnoses, procedures and medication history. The final random forest model achieved a c-statistic of 0.836 (95% CI 0.830 to 0.842) and an accuracy of 0.773 (95% CI 0.766 to 0.780). Conclusions This study achieved accurate prediction of transition points of hypertension control status, an important first step in the long-term goal of developing personalized hypertension management plans.
引用
收藏
页码:337 / 344
页数:8
相关论文
共 55 条
[1]   Therapeutic strategies to improve control of hypertension [J].
Armario, Pedro ;
Waeber, Bernard .
JOURNAL OF HYPERTENSION, 2013, 31 :S9-S12
[2]   INDIVIDUAL-RESPONSES TO CONVERTING ENZYME-INHIBITORS AND CALCIUM-ANTAGONISTS [J].
BIDIVILLE, J ;
NUSSBERGER, J ;
WAEBER, G ;
PORCHET, M ;
WAEBER, B ;
BRUNNER, HR .
HYPERTENSION, 1988, 11 (02) :166-173
[3]   A point-score system superior to blood pressure measures alone for predicting incident hypertension: Tehran Lipid and Glucose Study [J].
Bozorgmanesh, Mohammadreza ;
Hadaegh, Farzad ;
Mehrabi, Yadollah ;
Azizi, Fereidoun .
JOURNAL OF HYPERTENSION, 2011, 29 (08) :1486-1493
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   Personalised medicine for hypertension [J].
Brown, Morris J. .
BMJ-BRITISH MEDICAL JOURNAL, 2011, 343
[6]   Portability of an algorithm to identify rheumatoid arthritis in electronic health records [J].
Carroll, Robert J. ;
Thompson, Will K. ;
Eyler, Anne E. ;
Mandelin, Arthur M. ;
Cai, Tianxi ;
Zink, Raquel M. ;
Pacheco, Jennifer A. ;
Boomershine, Chad S. ;
Lasko, Thomas A. ;
Xu, Hua ;
Karlson, Elizabeth W. ;
Perez, Raul G. ;
Gainer, Vivian S. ;
Murphy, Shawn N. ;
Ruderman, Eric M. ;
Pope, Richard M. ;
Plenge, Robert M. ;
Kho, Abel Ngo ;
Liao, Katherine P. ;
Denny, Joshua C. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2012, 19 (E1) :E162-E169
[7]   Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure [J].
Chobanian, AV ;
Bakris, GL ;
Black, HR ;
Cushman, WC ;
Green, LA ;
Izzo, JL ;
Jones, DW ;
Materson, BJ ;
Oparil, S ;
Wright, JT ;
Roccella, EJ .
HYPERTENSION, 2003, 42 (06) :1206-1252
[8]   Cohort Profile: The Gubbio Population Study [J].
Cirillo, Massimo ;
Terradura-Vagnarelli, Oscar ;
Mancini, Mario ;
Menotti, Alessandro ;
Zanchetti, Alberto ;
Laurenzi, Martino .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2014, 43 (03) :713-720
[9]   Home and clinic blood pressure responses in elderly individuals with systolic hypertension [J].
Cushman, William C. ;
Duprez, Daniel A. ;
Weintraub, Howard S. ;
Purkayastha, Das ;
Zappe, Dion ;
Samuel, Rita ;
Izzo, Joseph L., Jr. .
JOURNAL OF THE AMERICAN SOCIETY OF HYPERTENSION, 2012, 6 (03) :210-218
[10]   Double-blind, placebo-controlled crossover comparison of five classes of anti hypertensive drugs [J].
Deary, AJ ;
Schumann, AL ;
Murfet, H ;
Haydock, SF ;
Foo, RSY ;
Brown, MJ .
JOURNAL OF HYPERTENSION, 2002, 20 (04) :771-777