A high-throughput approach to profile RNA structure

被引:31
作者
Delli Ponti, Riccardo [1 ,2 ]
Marti, Stefanie [1 ,2 ]
Armaos, Alexandros [1 ,2 ]
Gaetano Tartaglia, Gian [1 ,2 ,3 ]
机构
[1] Barcelona Inst Sci & Technol, Ctr Genom Regulat CRG, Dr Aiguader 88, Barcelona 08003, Spain
[2] Univ Pompeu Fabra, Barcelona 08003, Spain
[3] ICREA, 23 Passeig Lluis Co, Barcelona 08010, Spain
基金
欧洲研究理事会;
关键词
GENOME-WIDE MEASUREMENT; SECONDARY STRUCTURE; PREDICTION; SHAPE; ARCHITECTURE; EVOLUTION;
D O I
10.1093/nar/gkw1094
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Here we introduce the Computational Recognition of Secondary Structure (CROSS) method to calculate the structural profile of an RNA sequence (singleor double-stranded state) at single-nucleotide resolution and without sequence length restrictions. We trained CROSS using data from high-throughput experiments such as Selective 2'-Hydroxyl Acylation analyzed by Primer Extension (SHAPE; Mouse and HIV transcriptomes) and Parallel Analysis of RNA Structure (PARS; Human and Yeast transcriptomes) as well as high-quality NMR/X-ray structures (PDB database). The algorithm uses primary structure information alone to predict experimental structural profiles with >80% accuracy, showing high performances on large RNAs such as Xist (17 900 nucleotides; Area Under the ROC Curve AUC of 0.75 on dimethyl sulfate (DMS) experiments). We integrated CROSS in thermodynamics-based methods to predict secondary structure and observed an increase in their predictive power by up to 30%.
引用
收藏
页数:8
相关论文
共 28 条
  • [1] catRAPID omics: a web server for large-scale prediction of protein-RNA interactions
    Agostini, Federico
    Zanzoni, Andreas
    Klus, Petr
    Marchese, Domenica
    Cirillo, Davide
    Gaetano Tartaglia, Gian
    [J]. BIOINFORMATICS, 2013, 29 (22) : 2928 - 2930
  • [2] Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
    Alipanahi, Babak
    Delong, Andrew
    Weirauch, Matthew T.
    Frey, Brendan J.
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (08) : 831 - +
  • [3] RNA STRAND: The RNA secondary structure and statistical analysis database
    Andronescu, Mirela
    Bereg, Vera
    Hoos, Holger H.
    Condon, Anne
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)
  • [4] The MEME Suite
    Bailey, Timothy L.
    Johnson, James
    Grant, Charles E.
    Noble, William S.
    [J]. NUCLEIC ACIDS RESEARCH, 2015, 43 (W1) : W39 - W49
  • [5] Predicting protein associations with long noncoding RNAs
    Bellucci, Matteo
    Agostini, Federico
    Masin, Marianela
    Tartaglia, Gian Gaetano
    [J]. NATURE METHODS, 2011, 8 (06) : 444 - 445
  • [6] Quantitative Dimethyl Sulfate Mapping for Automated RNA Secondary Structure Inference
    Cordero, Pablo
    Kladwang, Wipapat
    VanLang, Christopher C.
    Das, Rhiju
    [J]. BIOCHEMISTRY, 2012, 51 (36) : 7037 - 7039
  • [7] Accurate SHAPE-directed RNA structure determination
    Deigan, Katherine E.
    Li, Tian W.
    Mathews, David H.
    Weeks, Kevin M.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (01) : 97 - 102
  • [8] Probing Xist RNA Structure in Cells Using Targeted Structure-Seq
    Fang, Rui
    Moss, Walter N.
    Rutenberg-Schoenberg, Michael
    Simon, Matthew D.
    [J]. PLOS GENETICS, 2015, 11 (12):
  • [9] The Vienna RNA Websuite
    Gruber, Andreas R.
    Lorenz, Ronny
    Bernhart, Stephan H.
    Neuboeck, Richard
    Hofacker, Ivo L.
    [J]. NUCLEIC ACIDS RESEARCH, 2008, 36 : W70 - W74
  • [10] Cellular Strategies for Regulating Functional and Nonfunctional Protein Aggregation
    Gsponer, Joerg
    Babu, M. Madan
    [J]. CELL REPORTS, 2012, 2 (05): : 1425 - 1437