Stability switches in a class of characteristic equations with delay-dependent parameters

被引:22
作者
Li, JQ
Ma, Z [1 ]
机构
[1] Xian Jiaotong Univ, Dept Math Appl, Xian 710049, Peoples R China
[2] Air Force Engn Univ, Telecommun Engn Inst, Xian 710077, Peoples R China
基金
中国国家自然科学基金;
关键词
characteristic equation; time delay; stability; ultimate stability;
D O I
10.1016/j.nonrwa.2003.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a method for determining the stability of the characteristic equation P(lambda, T) + Q(lambda, T)e(-lambdaT) + R(lambda, T)e(-2lambda7) = 0 is introduced. By this method, the purely imaginary eigenvalues can be found and the crossing direction of the eigenvalues through the imaginary axis as the delay T increases can be determined by a simple formula. The results show that stability switches may occur and the ultimate situation may be stable, unstable or alternately switching forever. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:389 / 408
页数:20
相关论文
共 50 条
  • [31] Critical values of stability and Hopf bifurcations for a delayed population model with delay-dependent parameters
    Fan, Li
    Shi, Zhongke
    Tang, Sanyi
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) : 341 - 355
  • [32] New delay-dependent stability analysis for fuzzy time-delay interconnected systems
    Yu, Guanjie
    Zhang, Hongbin
    Huang, Qiong
    Dang, Chuangyin
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2013, 42 (07) : 739 - 753
  • [33] A revisit of some delay-dependent stability criteria for uncertain time-delay systems
    Gu, KQ
    Han, QL
    TIME DELAY SYSTEMS, 2002, : 129 - 134
  • [34] Delay-dependent and delay-independent stability criteria for cellular neural networks with delays
    Li, Chuandong
    Liao, Xiaofeng
    Wong, Kwok-Wo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (11): : 3323 - 3340
  • [35] DELAY-DEPENDENT ROBUST STABILIZATION FOR A CLASS OF UNCERTAIN SINGULAR DELAY SYSTEMS
    Sun, Xin
    Zhang, Qingling
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2009, 5 (05): : 1231 - 1242
  • [36] Delay-dependent and delay-independent stability criteria for a delay differential system
    Matsunaga, Hideaki
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (12) : 4305 - 4312
  • [37] Delay-dependent robust stability of stochastic delay Systems with markovian switching
    Huang L.
    Mao X.
    Deng F.
    Journal of Control Theory and Applications, 2009, 7 (4): : 367 - 372
  • [39] Delay-dependent robust stability of stochastic delay systems with Markovian switching
    Lirong HUANG 1
    2.College of Automation Science and Engineering
    Journal of Control Theory and Applications, 2009, 7 (04) : 367 - 372
  • [40] New delay-dependent exponential stability for neural networks with time delay
    Mou, Shaoshuai
    Gao, Huijun
    Qiang, Wenyi
    Chen, Ke
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (02): : 571 - 576