On a functional equation of Bruce Ebanks

被引:3
作者
Brillouet-Belluot, Nicole [1 ]
机构
[1] Ecole Cent Nantes, Dept Math & Informat, F-44321 Nantes 3, France
关键词
Functional equation; continuous solution; cancellative associative operation; Cauchy's equation;
D O I
10.1007/s00010-013-0209-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper Brillouet-Belluot and Ebanks (Aequationes Math 60:233-242, 2000), the authors found all continuous functions f: [0, 1] -> [0, + infinity) which verify f(0) = f(1) = 0 and the functional equation f (xy + cf (x) f (y)) = xf (y) + yf(x) + d f(x)f(y) (1) where c and d are given real numbers with c not equal 0. In the present paper we obtain all continuous solutions f : R -> R of the functional equation (1).
引用
收藏
页码:173 / 189
页数:17
相关论文
共 50 条
  • [31] On a functional equation related to competition
    Peter Kahlig
    Janusz Matkowski
    Aequationes mathematicae, 2014, 87 : 301 - 308
  • [32] On a functional equation related to competition
    Kahlig, Peter
    Matkowski, Janusz
    AEQUATIONES MATHEMATICAE, 2014, 87 (03) : 301 - 308
  • [33] The chain rule as a functional equation
    Artstein-Avidan, Shin
    Koenig, Hermann
    Milman, Vitali
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (11) : 2999 - 3024
  • [34] On the functional equation of singular series
    Siegfried Böcherer
    Winfried Kohnen
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2000, 70 : 281 - 286
  • [35] On a functional equation of trigonometric type
    Jung, Soon-Mo
    Rassias, Michael Th.
    Mortici, Cristinel
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 252 : 294 - 303
  • [36] General and alien solutions of a functional equation and of a functional inequality
    Fechner, Wlodzimierz
    Gselmann, Eszter
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 80 (1-2): : 143 - 154
  • [37] On certain functional equation in prime rings
    Fosner, Maja
    Marcen, Benjamin
    Vukman, Joso
    OPEN MATHEMATICS, 2022, 20 (01): : 140 - 152
  • [38] A general functional equation and its stability
    Baker, JA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) : 1657 - 1664
  • [39] On the Superstability Related with the Trigonometric Functional Equation
    Gwang Hui Kim
    Advances in Difference Equations, 2009
  • [40] A functional equation with a symmetric binary operation
    Zoltán Daróczy
    Judita Dascăl
    Aequationes mathematicae, 2011, 82 : 291 - 297