On a functional equation of Bruce Ebanks

被引:3
|
作者
Brillouet-Belluot, Nicole [1 ]
机构
[1] Ecole Cent Nantes, Dept Math & Informat, F-44321 Nantes 3, France
关键词
Functional equation; continuous solution; cancellative associative operation; Cauchy's equation;
D O I
10.1007/s00010-013-0209-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper Brillouet-Belluot and Ebanks (Aequationes Math 60:233-242, 2000), the authors found all continuous functions f: [0, 1] -> [0, + infinity) which verify f(0) = f(1) = 0 and the functional equation f (xy + cf (x) f (y)) = xf (y) + yf(x) + d f(x)f(y) (1) where c and d are given real numbers with c not equal 0. In the present paper we obtain all continuous solutions f : R -> R of the functional equation (1).
引用
收藏
页码:173 / 189
页数:17
相关论文
共 50 条
  • [1] On a functional equation of Bruce Ebanks
    Nicole Brillouët-Belluot
    Aequationes mathematicae, 2014, 87 : 173 - 189
  • [2] On a generalized Dhombres functional equation
    Kahlig P.
    Smítal J.
    aequationes mathematicae, 2001, 62 (1) : 18 - 29
  • [3] On a generalized nonlinear functional equation
    Berg, Lothar
    Stevic, Stevo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (10) : 3305 - 3310
  • [4] On a parametric functional equation of Dhombres type
    P. Kahlig
    J. Smítal
    aequationes mathematicae, 1998, 56 (1-2) : 63 - 68
  • [5] ON A FUNCTIONAL EQUATION
    丁毅
    ActaMathematicaScientia, 2009, 29 (02) : 225 - 231
  • [6] ON A FUNCTIONAL EQUATION
    Ding Yi
    ACTA MATHEMATICA SCIENTIA, 2009, 29 (02) : 225 - 231
  • [7] On continuous solutions of a functional equation of iterative type
    Liu, ZQ
    Ume, JS
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2003, 33 (04) : 1403 - 1415
  • [8] On a solution to a functional equation
    Patkowski, Alexander E.
    JOURNAL OF APPLIED ANALYSIS, 2022, 28 (01) : 91 - 93
  • [9] On the solvability of a functional equation
    Liu, Zeqing
    Zhao, Liangshi
    Kang, Shin Min
    Ume, Jeong Sheok
    OPTIMIZATION, 2011, 60 (03) : 365 - 375
  • [10] On a General Functional Equation
    Bahyrycz, Anna
    SYMMETRY-BASEL, 2025, 17 (03):