Accurate calculation of the solutions to the Thomas-Fermi equations

被引:21
作者
Amore, Paolo [1 ]
Boyd, John P. [2 ]
Fernandez, Francisco M. [3 ]
机构
[1] Univ Colima, CUICBAS, Fac Ciencias, Colima, Mexico
[2] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA
[3] CCT La Plata CONICET, UNLP, INIFIA, Div Quim Teor, RA-1900 La Plata, Argentina
基金
美国国家科学基金会;
关键词
Thomas-Fermi equations; Critical slope; Singular points; Hankel-Pade method; Power series; Fade approximants; Hermite-Pade approximants; Chebyshev polynomials; SPECTRAL METHODS; POSITIVE-IONS; RESONANCES; CHEBYSHEV; SERIES; APPROXIMATION; EIGENVALUES; ENERGY; MODEL; ATOMS;
D O I
10.1016/j.amc.2014.01.137
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain highly accurate solutions to the Thomas-Fermi equations for atoms and atoms in very strong magnetic fields. We apply the Pade-Hankel method, numerical integration, power series with Fade and Hermite-Pade approximants and Chebyshev polynomials. Both the slope at origin and the location of the right boundary in the magnetic-field case are given with unprecedented accuracy. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:929 / 943
页数:15
相关论文
共 50 条
[1]   Analytic continuation of Taylor series and the boundary value problems of some nonlinear ordinary differential equations [J].
Abbasbandy, S. ;
Bervillier, C. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (05) :2178-2199
[2]  
Amore P, 2011, ACTA POLYTECH, V51, P9
[3]  
Amore P., ARXIV12051704V1QUANT
[4]  
Amore P., 2007, ARXIV07053862MATHPH
[5]   The application of the Fermi-Thomas - Statistical model to the calculation of potential distribution in positive ions [J].
Baker, EB .
PHYSICAL REVIEW, 1930, 36 (04) :0630-0647
[6]  
Baker G. A., 1975, ESSENTIALS PADE APPR
[7]  
Baker Jr G.A., 1965, PADE APPROXIMANTS, V1
[8]   THOMAS-FERMI AND THOMAS-FERMI-DIRAC CALCULATIONS FOR ATOMS IN A VERY STRONG MAGNETIC-FIELD [J].
BANERJEE, B ;
CONSTANTINESCU, DH ;
REHAK, P .
PHYSICAL REVIEW D, 1974, 10 (08) :2384-2395
[9]   Rational Chebyshev series for the Thomas-Fermi function: Endpoint singularities and spectral methods [J].
Boyd, John P. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 244 :90-101
[10]   Chebyshev Spectral Methods and the Lane-Emden Problem [J].
Boyd, John P. .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2011, 4 (02) :142-157