Characterization of biodegradable polymers with capacitive field-effect sensors

被引:13
作者
Schusser, S. [1 ,2 ]
Poghossian, A. [1 ,2 ]
Baecker, M. [1 ,2 ]
Leinhos, M. [1 ,2 ]
Wagner, P. [3 ]
Schoening, M. J. [1 ,2 ]
机构
[1] Aachen Univ Appl Sci, Inst Nano & Biotechnol INB, D-52428 Julich, Germany
[2] Forschungszentrum Julich, Peter Grunberg Inst PGI 8, D-52525 Julich, Germany
[3] Hasselt Univ, Inst Mat Res IMO, B-3590 Diepenbeek, Belgium
关键词
Field-effect sensor; (Bio)degradation; Poly(D; L-lacticacid); Real-time monitoring; C-V method; Impedance spectroscopy; PHOTOINDUCED IMPEDANCE MICROSCOPY; DEGRADATION; DEVICES; MECHANISMS; PENICILLIN; MEMBRANE; EROSION; ISFET; FILMS;
D O I
10.1016/j.snb.2012.07.099
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In vitro studies of the degradation kinetic of biopolymers are essential for the design and optimization of implantable biomedical devices. In the presented work, a field-effect capacitive sensor has been applied for the real-time and in situ monitoring of degradation processes of biopolymers for the first time. The polymer-covered field-effect sensor is, in principle, capable to detect any changes in bulk, surface and interface properties of the polymer induced by degradation processes. The feasibility of this approach has been experimentally proven by using the commercially available biomedical polymer poly(D,L-lactic acid) (PDLLA) as a model system. PDLLA films of different thicknesses were deposited on the Ta2O5-gate surface of the field-effect structure from a polymer solution by means of spin-coating method. The polymer-modified field-effect sensors have been characterized by means of capacitance-voltage and impedance-spectroscopy method. The degradation of the PDLLA was accelerated by changing the degradation medium from neutral (pH 7.2) to alkaline (pH 9) condition, resulting in drastic changes in the capacitance and impedance spectra of the polymer-modified field-effect sensor. (C) 2012 Elsevier B. V. All rights reserved.
引用
收藏
页码:2 / 7
页数:6
相关论文
共 50 条
[31]   Impedimetric detection of covalently attached biomolecules on field-effect transistors [J].
GhoshMoulick, Ranjita ;
Vu, Xuan Thang ;
Gilles, Sandra ;
Mayer, Dirk ;
Offenhaeusser, Andreas ;
Ingebrandt, Sven .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2009, 206 (03) :417-425
[32]   Debye Screening in Single-Molecule Carbon Nanotube Field-Effect Sensors [J].
Sorgenfrei, Sebastian ;
Chiu, Chien-yang ;
Johnston, Matthew ;
Nuckolls, Colin ;
Shepard, Kenneth L. .
NANO LETTERS, 2011, 11 (09) :3739-3743
[33]   Predictive simulations and optimization of nanowire field-effect PSA sensors including screening [J].
Baumgartner, Stefan ;
Heitzinger, Clemens ;
Vacic, Aleksandar ;
Reed, Mark A. .
NANOTECHNOLOGY, 2013, 24 (22)
[34]   Field-effect sensors for monitoring the layer-by-layer adsorption of charged macromolecules [J].
Poghossian, A. ;
Abouzar, M. H. ;
Sakkari, M. ;
Kassab, T. ;
Han, Y. ;
Ingebrandt, S. ;
Offenhaeusser, A. ;
Schoening, M. J. .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 118 (1-2) :163-170
[35]   Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis [J].
Zhang, Yanjun ;
Clausmeyer, Jan ;
Babakinejad, Babak ;
Cordoba, Ainara Lopez ;
Ali, Tayyibah ;
Shevchuk, Andrew ;
Takahashi, Yasufumi ;
Novak, Pavel ;
Edwards, Christopher ;
Lab, Max ;
Gopal, Sahana ;
Chiappini, Ciro ;
Anand, Uma ;
Magnani, Luca ;
Coombes, R. Charles ;
Gorelik, Julia ;
Matsue, Tomokazu ;
Schuhmann, Wolfgang ;
Klenerman, David ;
Sviderskaya, Elena V. ;
Korchev, Yuri .
ACS NANO, 2016, 10 (03) :3214-3221
[36]   The analysis of-ion-selective field-effect transistor operation in chemical sensors [J].
Hotra, Z ;
Holyaka, R ;
Hladun, M ;
Humenuk, I .
OPTOELECTRONIC AND ELECTRONIC SENSORS V, 2002, :104-107
[37]   Fast patterning of oriented organic microstripes for field-effect ammonia gas sensors [J].
Wang, Binghao ;
Ding, Jinqiang ;
Zhu, Tao ;
Huang, Wei ;
Cui, Zequn ;
Chen, Jianmei ;
Huang, Lizhen ;
Chi, Lifeng .
NANOSCALE, 2016, 8 (07) :3954-3961
[38]   High Performance Hydrogen Sensors Based on Tellurium Nanobelt Field-Effect Transistors [J].
Guo, Yu ;
Zhang, Jianping ;
Yuan, Zhen ;
Tai, Huiling .
2024 IEEE SENSORS, 2024,
[39]   Metabolic responses of Escherichia coli upon glucose pulses captured by a capacitive field-effect sensor [J].
Huck, Christina ;
Schiffels, Johannes ;
Herrera, Cony N. ;
Schelden, Maximilian ;
Selmer, Thorsten ;
Poghossian, Arshak ;
Baumann, Marcus E. M. ;
Wagner, Patrick ;
Schoening, Michael J. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2013, 210 (05) :926-931
[40]   Characterization of Radiation Damage in Carbon Nanotube Field-Effect Transistors [J].
Francis, S. Ashley ;
Cress, Cory D. ;
McClory, John W. ;
Moore, Elizabeth A. ;
Petrosky, James C. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2013, 60 (06) :4087-4093