Characterization of biodegradable polymers with capacitive field-effect sensors

被引:13
作者
Schusser, S. [1 ,2 ]
Poghossian, A. [1 ,2 ]
Baecker, M. [1 ,2 ]
Leinhos, M. [1 ,2 ]
Wagner, P. [3 ]
Schoening, M. J. [1 ,2 ]
机构
[1] Aachen Univ Appl Sci, Inst Nano & Biotechnol INB, D-52428 Julich, Germany
[2] Forschungszentrum Julich, Peter Grunberg Inst PGI 8, D-52525 Julich, Germany
[3] Hasselt Univ, Inst Mat Res IMO, B-3590 Diepenbeek, Belgium
关键词
Field-effect sensor; (Bio)degradation; Poly(D; L-lacticacid); Real-time monitoring; C-V method; Impedance spectroscopy; PHOTOINDUCED IMPEDANCE MICROSCOPY; DEGRADATION; DEVICES; MECHANISMS; PENICILLIN; MEMBRANE; EROSION; ISFET; FILMS;
D O I
10.1016/j.snb.2012.07.099
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In vitro studies of the degradation kinetic of biopolymers are essential for the design and optimization of implantable biomedical devices. In the presented work, a field-effect capacitive sensor has been applied for the real-time and in situ monitoring of degradation processes of biopolymers for the first time. The polymer-covered field-effect sensor is, in principle, capable to detect any changes in bulk, surface and interface properties of the polymer induced by degradation processes. The feasibility of this approach has been experimentally proven by using the commercially available biomedical polymer poly(D,L-lactic acid) (PDLLA) as a model system. PDLLA films of different thicknesses were deposited on the Ta2O5-gate surface of the field-effect structure from a polymer solution by means of spin-coating method. The polymer-modified field-effect sensors have been characterized by means of capacitance-voltage and impedance-spectroscopy method. The degradation of the PDLLA was accelerated by changing the degradation medium from neutral (pH 7.2) to alkaline (pH 9) condition, resulting in drastic changes in the capacitance and impedance spectra of the polymer-modified field-effect sensor. (C) 2012 Elsevier B. V. All rights reserved.
引用
收藏
页码:2 / 7
页数:6
相关论文
共 50 条
[21]   Scalable graphene field-effect sensors for specific protein detection [J].
Saltzgaber, Grant ;
Wojcik, Peter ;
Sharf, Tal ;
Leyden, Matthew R. ;
Wardini, Jenna L. ;
Heist, Christopher A. ;
Adenuga, Adeniyi A. ;
Remcho, Vincent T. ;
Minot, Ethan D. .
NANOTECHNOLOGY, 2013, 24 (35)
[22]   K+-selective field-effect sensors as transducers for bioelectronic [J].
Mourzina, Y ;
Mai, T ;
Poghossian, A ;
Ermolenko, Y ;
Yoshinobu, T ;
Vlasov, Y ;
Iwasaki, H ;
Schöning, MJ .
ELECTROCHIMICA ACTA, 2003, 48 (20-22) :3333-3339
[23]   DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer [J].
Bronder, Thomas S. ;
Poghossian, Arshak ;
Scheja, Sabrina ;
Wu, Chunsheng ;
Keusgen, Michael ;
Mewes, Dieter ;
Schoening, Michael J. .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (36) :20068-20075
[24]   Capacitive Field-Effect Biosensor Studying Adsorption of Tobacco Mosaic Virus Particles [J].
Jablonski, Melanie ;
Poghossian, Arshak ;
Severins, Robin ;
Keusgen, Michael ;
Wege, Christina ;
Schoening, Michael J. .
MICROMACHINES, 2021, 12 (01)
[25]   MEMBRANE-OXIDE SEMICONDUCTOR FIELD-EFFECT TRANSISTOR (MOSFET) SENSORS [J].
VLASOV, Y .
MIKROCHIMICA ACTA, 1991, 2 (1-6) :363-377
[26]   Field-effect transistor chemical sensors of single nanoribbon of copper phthalocyanine [J].
Zhang YaJie ;
Hu WenPing .
SCIENCE IN CHINA SERIES B-CHEMISTRY, 2009, 52 (06) :751-754
[27]   Recent Advances in Flexible Field-Effect Transistors toward Wearable Sensors [J].
Li, Ming-Zheng ;
Han, Su-Ting ;
Zhou, Ye .
ADVANCED INTELLIGENT SYSTEMS, 2020, 2 (11)
[28]   Strategies for Improving the Performance of Sensors Based on Organic Field-Effect Transistors [J].
Wu, Xiaohan ;
Mao, Shun ;
Chen, Junhong ;
Huang, Jia .
ADVANCED MATERIALS, 2018, 30 (17)
[29]   Highly Transparent and Stretchable Field-Effect Transistor Sensors Using Graphene-Nanowire Hybrid Nanostructures [J].
Kim, Joohee ;
Lee, Mi-Sun ;
Jeon, Sangbin ;
Kim, Minji ;
Kim, Sungwon ;
Kim, Kukjoo ;
Bien, Franklin ;
Hong, Sung You ;
Park, Jang-Ung .
ADVANCED MATERIALS, 2015, 27 (21) :3292-3297
[30]   A Biomimetric Lactate Imprinted Smart Polymers as Capacitive Sweat Sensors [J].
Mugo, Samuel M. ;
Alberkant, Jonathan .
IEEE SENSORS JOURNAL, 2020, 20 (11) :5741-5749