Nafion coated sulfur-carbon electrode for high performance lithium-sulfur batteries

被引:98
作者
Tang, Qiwei [1 ]
Shan, Zhongqiang [1 ]
Wang, Li [2 ]
Qin, Xue [2 ]
Zhu, Kunlei [1 ]
Tian, Jianhua [1 ]
Liu, Xuesheng [3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Sch Sci, Tianjin 300072, Peoples R China
[3] Natl Key Lab Sci & Technol Power Sources, Tianjin 300381, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
Lithium-sulfur batteries; Sulfur electrode; Carbon materials; Electrode protection; Nation film; CATHODE; COMPOSITES; DISCHARGE; IONOMER;
D O I
10.1016/j.jpowsour.2013.07.076
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, a nafion coated electrode is prepared to improve the performance of lithium sulfur batteries. It is demonstrated from a series of measurements that the nafion layer is quite effective in reducing shuttle effect and enhancing the stability and the reversibility of the electrode. When measured under the rate of 0.2 C, the initial discharge capacity of the nafion coated electrode can reach 1084 mAh g(-1), with a Columbic efficiency of about 100%. After 100 charge/discharge cycles, this electrode can also deliver a reversible capacity of as high as 879 mAh g(-1). Significantly, the charge-transfer resistance of the electrode tends to be reducing after coated with an appropriate thickness of nafion film. The cation conductivity as well as anion inconductivity is considered to be the dominant factor for the superior electrochemical properties. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:253 / 259
页数:7
相关论文
共 29 条
[1]  
[Anonymous], 2010, ANGEW CHEM-GER EDIT, DOI [DOI 10.1002/ANIE.200907324, DOI 10.1002/ANGE.200907324]
[2]  
Buchel G, 1998, ADV MATER, V10, P1036, DOI 10.1002/(SICI)1521-4095(199809)10:13<1036::AID-ADMA1036>3.0.CO
[3]  
2-Z
[4]   Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries [J].
Cao, Yuliang ;
Li, Xiaolin ;
Aksay, Ilhan A. ;
Lemmon, John ;
Nie, Zimin ;
Yang, Zhenguo ;
Liu, Jun .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (17) :7660-7665
[5]   Rechargeable lithium sulfur battery - I. Structural change of sulfur cathode during discharge and charge [J].
Cheon, SE ;
Ko, KS ;
Cho, JH ;
Kim, SW ;
Chin, EY ;
Kim, HT .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) :A796-A799
[6]   Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes [J].
Choi, Jae-Won ;
Kim, Jin-Kyu ;
Cheruvally, Gouri ;
Ahn, Jou-Hyeon ;
Ahn, Hyo-Jun ;
Kim, Ki-Won .
ELECTROCHIMICA ACTA, 2007, 52 (05) :2075-2082
[7]   Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell [J].
Choi, Young-Jin ;
Chung, Young-Dong ;
Baek, Chang-Yong ;
Kim, Ki-Won ;
Ahn, Hyo-Jun ;
Ahn, Jou-Hyeon .
JOURNAL OF POWER SOURCES, 2008, 184 (02) :548-552
[8]   Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries [J].
Elazari, Ran ;
Salitra, Gregory ;
Garsuch, Arnd ;
Panchenko, Alexander ;
Aurbach, Doron .
ADVANCED MATERIALS, 2011, 23 (47) :5641-+
[9]  
Faulkner L.R., 1988, U.S. Patent, Patent No. [4, 752, 541, 4752541]
[10]   Enhanced Cyclability of Lithium-Sulfur Batteries by a Polymer Acid-Doped Polypyrrole Mixed Ionic-Electronic Conductor [J].
Fu, Yongzhu ;
Manthiram, Arumugam .
CHEMISTRY OF MATERIALS, 2012, 24 (15) :3081-3087