Supercapacitors based on nitrogen-doped reduced graphene oxide and borocarbonitrides

被引:70
作者
Gopalakrishnan, K. [1 ,2 ]
Moses, Kota [3 ]
Govindaraj, A. [1 ,2 ,4 ]
Rao, C. N. R. [1 ,2 ,3 ,4 ]
机构
[1] CSIR Ctr Excellence Chem, Int Ctr Mat Sci, Chem & Phys Mat Unit, Bangalore 560064, Karnataka, India
[2] Jawaharlal Nehru Ctr Adv Sci Res, Sheik Saqr Lab, Bangalore 560064, Karnataka, India
[3] Indian Inst Sci, Mat Res Ctr, Bangalore 566012, Karnataka, India
[4] Indian Inst Sci, Solid State & Struct Chem Unit, Bangalore 566012, Karnataka, India
关键词
Graphene; Nitrogenated graphene; Borocarbonitrides; Supercapacitors; REDUCTION; STORAGE; UREA;
D O I
10.1016/j.ssc.2013.02.005
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Nitrogen-doped reduced giaphene oxide (RGO) samples with different nitrogen content, prepared by two different methods, as well as nitrogen-doped few-layer graphene have been investigated as supercapacitor electrodes. Two electrode measurements have been carried out both in aqueous (6 M KOH) and in ionic liquid media. Nitrogen-doped reduced graphene oxides exhibit satisfactory specific capacitance, the values reaching 126 F/g at a scan rate of 10 mV/s in aqueous medium. Besides providing supercapacitor characteristics, the study has shown the nitrogen content and surface area to be important factors. High surface-area borocarbonitrides, BxCyNz, prepared by the urea route appear to be excellent supercapacitor electrode materials. Thus, BC4.5N exhibits a specific capacitance of 169 F/g at a scan rate of 10 mV/s in aqueous medium. In an ionic liquid medium, nitrogen-doped RGO and BC4.5N exhibit specific capacitance values of 258 F/g and 240 F/g at a scan rate of 5 mV/s. The ionic liquid enables a larger operating voltage range of 0.0-2.5 V compared to 0.0-1 V in aqueous medium. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:43 / 50
页数:8
相关论文
共 28 条
[1]  
An KH, 2001, ADV MATER, V13, P497, DOI 10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.3.CO
[2]  
2-8
[3]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[4]   Building blocks for integrated graphene circuits [J].
Areshkin, Denis A. ;
White, Carter T. .
NANO LETTERS, 2007, 7 (11) :3253-3259
[5]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[6]   Toward N-Doped Graphene via Solvothermal Synthesis [J].
Deng, Dehui ;
Pan, Xiulian ;
Yu, Liang ;
Cui, Yi ;
Jiang, Yeping ;
Qi, Jing ;
Li, Wei-Xue ;
Fu, Qiang ;
Ma, Xucun ;
Xue, Qikun ;
Sun, Gongquan ;
Bao, Xinhe .
CHEMISTRY OF MATERIALS, 2011, 23 (05) :1188-1193
[7]   Nitrogen doping effects on the structure of graphene [J].
Geng, Dongsheng ;
Yang, Songlan ;
Zhang, Yong ;
Yang, Jinli ;
Liu, Jian ;
Li, Ruying ;
Sham, Tsun-Kong ;
Sun, Xueliang ;
Ye, Siyu ;
Knights, Shanna .
APPLIED SURFACE SCIENCE, 2011, 257 (21) :9193-9198
[8]   Selectivity in the photocatalytic properties of the composites of TiO2 nanoparticles with B- and N-doped graphenes [J].
Gopalakrishnan, K. ;
Joshi, Hrushikesh M. ;
Kumar, Prashant ;
Panchakarla, L. S. ;
Rao, C. N. R. .
CHEMICAL PHYSICS LETTERS, 2011, 511 (4-6) :304-308
[9]   Vertically Aligned BCN Nanotubes with High Capacitance [J].
Iyyamperumal, Eswaramoorthi ;
Wang, Shuangyin ;
Dai, Liming .
ACS NANO, 2012, 6 (06) :5259-5265
[10]   Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes [J].
Jeong, Hyung Mo ;
Lee, Jung Woo ;
Shin, Weon Ho ;
Choi, Yoon Jeong ;
Shin, Hyun Joon ;
Kang, Jeung Ku ;
Choi, Jang Wook .
NANO LETTERS, 2011, 11 (06) :2472-2477