Classification of rings with toroidal co-annihilating-ideal graphs

被引:0
作者
Khoeilar, Rana [1 ]
Amjadi, Jafar [1 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
Commutative rings; co-annihilating-ideal graph; planar graph; genus; ZERO-DIVISOR GRAPH;
D O I
10.1142/S1793830921500063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a commutative ring with identity. The co-annihilating-ideal graph of R, denoted by A(R), is a graph whose vertex set is the set of all nonzero proper ideals of R and two distinct vertices I and J are adjacent whenever Ann(I) boolean AND Ann(J) = {0}. In this paper, we study the planarity and genus of A(R). In particular, we characterize all Artinian rings R for which the genus of A(R) is zero or one.
引用
收藏
页数:16
相关论文
共 27 条
  • [1] The Co-annihilating-ideal Graphs of Commutative Rings
    Akbari, Saeeid
    Alilou, Abbas
    Amjadi, Jafar
    Sheikholeslami, Eyed Mahmoud
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (01): : 3 - 11
  • [2] A new graph associated to a commutative ring
    Alilou, A.
    Amjadi, J.
    Sheikholeslami, S. M.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (02)
  • [3] Alilou A., 2016, COMMUN COMBIN OPTIM, V1, P117
  • [4] THE ANNIHILATING-IDEAL GRAPH OF A COMMUTATIVE RING WITH RESPECT TO AN IDEAL
    Aliniaeifard, F.
    Behboodi, M.
    Mehdi-Nezhad, E.
    Rahimi, A. M.
    [J]. COMMUNICATIONS IN ALGEBRA, 2014, 42 (05) : 2269 - 2284
  • [5] The total graph of a commutative ring
    Anderson, David F.
    Badawi, Ayman
    [J]. JOURNAL OF ALGEBRA, 2008, 320 (07) : 2706 - 2719
  • [6] On the zero-divisor graph of a ring
    Anderson, David F.
    Badawi, Ayman
    [J]. COMMUNICATIONS IN ALGEBRA, 2008, 36 (08) : 3073 - 3092
  • [7] The zero-divisor graph of a commutative ring
    Anderson, DF
    Livingston, PS
    [J]. JOURNAL OF ALGEBRA, 1999, 217 (02) : 434 - 447
  • [8] [Anonymous], 1967, ALGEBRAIC TOPOLOGY I
  • [9] COLORING OF COMMUTATIVE RINGS
    BECK, I
    [J]. JOURNAL OF ALGEBRA, 1988, 116 (01) : 208 - 226
  • [10] Behboodi M, 2011, J ALGEBRA APPL, V10, P727, DOI 10.1142/S0219498811004896