An inexact Newton method for nonconvex equality constrained optimization

被引:33
|
作者
Byrd, Richard H. [2 ]
Curtis, Frank E. [1 ]
Nocedal, Jorge [3 ]
机构
[1] Northwestern Univ, Dept Ind Engn & Management Sci, Evanston, IL 60208 USA
[2] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA
[3] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
Large-scale optimization; Constrained optimization; Nonconvex programming; Inexact linear system solvers; Krylov subspace methods; CONVERGENCE; 2ND-ORDER; ALGORITHM; POINT;
D O I
10.1007/s10107-008-0248-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a matrix-free line search algorithm for large-scale equality constrained optimization that allows for inexact step computations. For strictly convex problems, the method reduces to the inexact sequential quadratic programming approach proposed by Byrd et al. [SIAM J. Optim. 19(1) 351-369, 2008]. For nonconvex problems, the methodology developed in this paper allows for the presence of negative curvature without requiring information about the inertia of the primal-dual iteration matrix. Negative curvature may arise from second-order information of the problem functions, but in fact exact second derivatives are not required in the approach. The complete algorithm is characterized by its emphasis on sufficient reductions in a model of an exact penalty function. We analyze the global behavior of the algorithm and present numerical results on a collection of test problems.
引用
收藏
页码:273 / 299
页数:27
相关论文
共 50 条
  • [41] A truncated Newton method for constrained optimization
    Di Pillo, G
    Lucidi, S
    Palagi, L
    NONLINEAR OPTIMIZATION AND RELATED TOPICS, 2000, 36 : 79 - 103
  • [42] A STOCHASTIC SEMISMOOTH NEWTON METHOD FOR NONSMOOTH NONCONVEX OPTIMIZATION
    Milzarek, Andre
    Xiao, Xiantao
    Cen, Shicong
    Wen, Zaiwen
    Ulbrich, Michael
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) : 2916 - 2948
  • [43] A NEW METHOD FOR EQUALITY CONSTRAINED OPTIMIZATION
    JIA, LX
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1990, 8 (03): : 195 - 201
  • [44] A line search filter algorithm with inexact step computations for equality constrained optimization
    Zhu, Xiaojing
    Pu, Dingguo
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (03) : 212 - 223
  • [45] Line search filter inexact secant methods for nonlinear equality constrained optimization
    Wang, Zhujun
    Cai, Li
    Zhu, Detong
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 263 : 47 - 58
  • [46] A Flexible Inexact-Restoration Method for Constrained Optimization
    Bueno, L. F.
    Haeser, G.
    Martinez, J. M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 165 (01) : 188 - 208
  • [47] A Flexible Inexact-Restoration Method for Constrained Optimization
    L. F. Bueno
    G. Haeser
    J. M. Martínez
    Journal of Optimization Theory and Applications, 2015, 165 : 188 - 208
  • [48] Class of Newton-type methods for equality and inequality constrained optimization
    Kanzow, Christian
    Kleinmichel, Helmut
    Optimization Methods and Software, 1995, 5 (02) : 173 - 198
  • [49] PARTITIONED QUASI-NEWTON METHODS FOR NONLINEAR EQUALITY CONSTRAINED OPTIMIZATION
    COLEMAN, TF
    FENYES, PA
    MATHEMATICAL PROGRAMMING, 1992, 53 (01) : 17 - 44
  • [50] Partitioned quasi-Newton methods for nonlinear equality constrained optimization
    Coleman, Thomas F.
    Fenyes, Peter A.
    Mathematical Programming, Series A, 1992, 53 (1-6): : 17 - 44