Angle-Domain Aided UL/DL Channel Estimation for Wideband mmWave Massive MIMO Systems With Beam Squint

被引:56
作者
Jian, Mengnan [1 ,2 ,3 ]
Gao, Feifei [1 ,2 ,3 ]
Tian, Zhi [4 ]
Jin, Shi [5 ]
Ma, Shaodan [6 ,7 ]
机构
[1] Tsinghua Univ, Inst Artificial Intelligence, Beijing 100084, Peoples R China
[2] Tsinghua Univ, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Dept Automat, Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
[4] George Mason Univ, Dept Elect & Comp Engn, Fairfax, VA 22030 USA
[5] Southeast Univ, Natl Commun Res Lab, Nanjing 210096, Jiangsu, Peoples R China
[6] Univ Macau, State Key Lab Internet Things Smart City, Macau 999078, Peoples R China
[7] Univ Macau, Dept Elect & Comp Engn, Macau 999078, Peoples R China
基金
中国国家自然科学基金;
关键词
Beam squint effect; channel estimation; off-grid; angle-delay reciprocity; CRB;
D O I
10.1109/TWC.2019.2915072
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we design an uplink/downlink channel estimation method for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems and investigate the impact of beam squint effect that accompanies large array configuration. Specifically, we adopt the off-grid sparse Bayesian learning (SBL) that directly works on the continuous angle-delay parameter domain and avoids the grid mismatch problem. Hence, the proposed method achieves good channel estimation accuracy and handles the wideband direction of arrival (DOA) estimation problem for mmWave massive MIMO communications, where beam squint effect was previously ignored by many existing literatures. The Cramer-Rao bound for unknown parameters is derived to make the proposed study complete. More importantly, a much simplified downlink channel estimation scheme is designed with the aid of angle-delay reciprocity, which significantly reduces training and feedback overhead. The simulation results are provided to demonstrate the superior performance of the proposed method over existing ones.
引用
收藏
页码:3515 / 3527
页数:13
相关论文
共 35 条
[1]   What Will 5G Be? [J].
Andrews, Jeffrey G. ;
Buzzi, Stefano ;
Choi, Wan ;
Hanly, Stephen V. ;
Lozano, Angel ;
Soong, Anthony C. K. ;
Zhang, Jianzhong Charlie .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) :1065-1082
[2]   Bayesian Compressive Sensing Using Laplace Priors [J].
Babacan, S. Derin ;
Molina, Rafael ;
Katsaggelos, Aggelos K. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (01) :53-63
[3]   Compressed Channel Sensing: A New Approach to Estimating Sparse Multipath Channels [J].
Bajwa, Waheed U. ;
Haupt, Jarvis ;
Sayeed, Akbar M. ;
Nowak, Robert .
PROCEEDINGS OF THE IEEE, 2010, 98 (06) :1058-1076
[4]   Atomic Norm Denoising With Applications to Line Spectral Estimation [J].
Bhaskar, Badri Narayan ;
Tang, Gongguo ;
Recht, Benjamin .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (23) :5987-5999
[5]  
Burdge B, 2010, CONF REC ASILOMAR C, P2037, DOI 10.1109/ACSSC.2010.5757905
[6]   Super-Resolution from Noisy Data [J].
Candes, Emmanuel J. ;
Fernandez-Granda, Carlos .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (06) :1229-1254
[7]   Pilot Decontamination in Wideband Massive MIMO Systems by Exploiting Channel Sparsity [J].
Chen, Zhilin ;
Yang, Chenyang .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2016, 15 (07) :5087-5100
[8]   Downlink Training Techniques for FDD Massive MIMO Systems: Open-Loop and Closed-Loop Training With Memory [J].
Choi, Junil ;
Love, David J. ;
Bidigare, Patrick .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (05) :802-814
[9]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[10]   Super-Resolution Compressed Sensing for Line Spectral Estimation: An Iterative Reweighted Approach [J].
Fang, Jun ;
Wang, Feiyu ;
Shen, Yanning ;
Li, Hongbin ;
Blum, Rick S. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (18) :4649-4662